

Typography Day 2014
- Typography and Culture

Method to create personalized fonts based on a
person's handwriting

Dhvanil Patel, Indian Institute of Technology Guwahati, India, dhvanilpatel2012@gmail.com
Sanuj Sharma, Indian Institute of Technology Guwahati, India, sanuj.sharma.in@gmail.com

Abstract: In this paper, we illustrate in detail, a method which can be efficiently used to convert

the handwriting of a person into a true type font. A program was also created using open-source

software which performs this function in a very simple way. The person is made to fill in a sheet of

paper which is then scanned at high resolution. Afterwards, the program automatically extracts the

letters from it and compiles them into a true type font. Furthermore, the paper also illustrates

various ways in which this process can be improved. Randomized characters and alternate input

characters are some of the approached suggested in this paper.

Key words: Personalized font, Latin script, Alternate characters, Randomized alphabets.

1. Introduction

Typefaces today are very dull and monotonous. They are highly repetitive. We can clearly

identify the difference between handwritten text and typed/printed text. Although

certain scripting fonts do contain alternate characters and ligatures but even they differ

greatly from handwritten text.

Figure 1. Typed text versus handwritten text

There is a need to create personalized fonts which could be used by common people.

These personalized fonts would try to bridge the gap between the printed media and the

handwritten media. This would help the people to increase the feeling of personalization

in typed media.

In this paper, we explain in detail, the script which could enable anyone to make his/her

own font which could then be used by him to personalize any written media. The script

has many features which makes it a lot better than most handwriting this could be used in

personal letters, invitation letters, digital signatures, etc.

2. Method

The following approach was used by us in order to create the personalized font. We tried

to create a method which was as simple as possible, and which required very little

technical expertise from the user. Although, the method is illustrated in various steps, a

Shell script was developed which linked all these programs seamlessly. No additional

expertise is required from the user. The machine performs all the functions on its own.

2.1 Taking in the handwriting sample from the person.

This is the first step of the process, in which a person is given an A4 paper, called the input

sheet, in which he writes the alphabets, numbers and special characters in his own

handwriting in predefined boxes. Please refer to the picture below for the format of the

input sheet. This particular format of the sheet has been decided upon after a lot of user

trials and computer testing.

Various criteria were taken into account:

1. The size of the boxes, which was directly related to the easiness with which the

users could write the characters.

2. The thickness and the overall arrangement of the boxes, which was related with

the code which was used to extract the characters from the scanned image. The

working and the algorithm of the code has been explained in the next section.

3. The simplicity of the paper, which would improve the user-friendliness of the entire

process. Various features were added to the original format on account of this

criterion.

Since the terminals of the handwritten characters do not have consistency, four

alternatives for each character were taken. This increases the possibility of smooth fitting

of cursive characters. The end and the beginning of the characters must coincide, more or

less.

Figure 2. Input sheet with alternate characters

2.2 Scanning the sheet.

The input sheet are scanned with a normal desktop scanner. Various scan resolutions were

tested on the code and finally, 600 dpi resolution was selected. The dimensions of the

scanned image were about 2300 pixels by 1600 pixels. Sometimes, the more than one

sheets were scanned to include the feature of alternate characters. Having multiple input

sheets highly increases the likeliness of the person’s handwriting with the developed font.

This feature is explained in detail in the next section. The code also worked well at

resolution of 150 dpi, although the quality was not up to the mark.

2.3 Extracting the glyphs.

The code then, performed image processing functions on the scanned image and

recognized the boxes which housed the characters provided by the user. The algorithm and

its functioning is explained in detail in the next section. After that, the boxes were

cropped and saved into separate png files. Each image is named after the UNI code of the

character housed within it.

2.4 Creating Scalable Vector Files (SVGs) from the cropped images.

Since font creating software do not accept direct bitmap images, we needed to convert

individual bitmap images into SVG files which could then be imported into FontForge.

An open source software, Potrace was used for this vectorization process after tweaking it

slightly to suit our needs. Also, the characters were slightly shifted so that the spacing

between them isn’t affected when the font is finally made.

Figure 3. Python script creating SVGs from bitmap images.

2.5 Importing SVGs into FontForge.

After the SVGs were created by Potrace, they were imported into FontForge for the final

stage of our font creation process [1] [2]. A python script was written which automatically

imported the SVGs into the relevant glyphs. This could easily be done because the bitmaps

were named according to the UNI code of the character they housed.

Figure 4. SVG for the glyph 'a' imported in FontForge and one character set of the font in

FontForge.

2.6 Processing the font.

After the SVG files are imported into FontForge, the font was auto-spaced and auto-

kerned using the in-built functions of FontForge. These functions were called via a script

which then generated the whole font.

3. Algorithm

The algorithm (ExtractGlyphs.cpp) is based on another algorithm called squares.cpp which

is distributed as a sample with OpenCV (Open Source Computer Vision Library) [3].

Squares.cpp returns an array of the coordinates and dimensions of the rectangles

identified. It uses Canny (for edge detection) and findContours (to find contours). After

finding all the edges it compares the angle by finding respective cosine values and discards

those which are greater than 0.2 (threshold value). Once I get all the rectangles a function

filters out redundant rectangles according to their areas and coordinates. Then sub-images

are generated, in turn extracting all the rectangles which contain the glyphs from the

input form filled by the user. To extract the glyph from the sub-images, some functions are

used which bound the glyph by a rectangle. The generated ".bmp" files are converted into

".svg" by using a command line utility called Potrace. It uses the parametric cubic

algorithm suggested by J. Gonczarowski [4]. The vectored glyphs are then pushed into

FontForge by using a python script to get a truetype font file. The whole process is

automated by a shell script which takes the responsibility of calling IdentifySquares,

Potrace, and FontForge script respectively.

4. Results

About ten personalized fonts were created using this technique, with no manual

intervention. All the fonts bore very high resemblance to the actual handwriting of the

person. The use of alternate characters made it difficult to recognize it as a typeface. It

brought in an element of randomness which is normally associated with handwritten

media. However, in case of cursive letters, there was some visual discontinuity in the

connectors of the small letters. However, in the case of manuscript type of writing, the

script worked perfectly and automatically adjusted the character-spacing and kerning.

Figure 5. Alternate characters for the letter 'A'

5. Drawbacks

There were about five specific problems we identified with our model. These are

explained below:

1. Discontinuity in the connectors.

The connectors in the longhand handwriting style appeared sloppy at times. Since

the handwritten letters are very irregular and the connector height remains very

inconsistent, joining the connectors together for all the glyphs was not possible.

Although this problem was, to some extent, taken care of by the incorporation of

alternate characters.

2. Cumbersomeness of alternate characters.

Except for graphic designers, very few people actually know about alternate

characters and their application. And since commonly used text editors do not have

a random select contextual alternatives option, the user will have to manually

select the alternate glyphs from the extended glyphs menu.

3. Baseline inconsistency.

The final font had some inconsistencies in the height of baseline which made it

look slightly haphazard. The inconsistencies were particularly evident in the case

of descending letters. This is because of the nature of the code and the

approximations used.

4. Uneven thickness of the strokes.

The ink sloshes on the paper and the uneven impressions left while writing lead to

irregular thickness of the strokes sometimes. This happens mostly in lower case

alphabets since they have too many curves.

6. Future Scope

There is immense scope for further improvisation of the program so that the gap between

typed and handwritten media can be reduced even further. Some of the key points of

interest are explained below:

1. Variable character spacing and kerning.

One of the main features of handwritten text is that the character as well as the

word spacing is never constant. Using Extensible Application Markup Language

(XAML) [4], one can easily integrate a randomized functions for alternate glyphs as

well as variable spacing.

2. Variable baseline.

Very rarely do people have a consistent baseline in their handwriting. Although

individual words have a fixed baseline, in common writing our baseline varies

considerably, especially while writing on unruled sheet of paper [5].

3. Random characters.

There are various algorithms which create random character shapes from one

shape. This can be done by random perturbation of Bezier control points [6]. The

degree of randomness can also be changed according.

7. Conclusion

This project successfully illustrates that fonts, which have been considered mechanical

and morbid since the invention of mass printing, can now be converted into something less

machine like, something more personalized. These personalized fonts will make the task

of humans easier in many ways. Computer voice synthesizers are becoming more and more

human, Computer programs are becoming more and more human, and it is time fonts too

became more personalized, more human like.

8. References

[1] http://fontforge.org/python.html

[2] http://potrace.sourceforge.net/faq.html

[3] Canny, J. (1986) A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, (6), pp 679-698.

[4] Gonczarowski, J. (1991) A fast approach to auto-tracing (with parametric cubics), in Raster

Imaging and Digital Typography II, Morris R. A. and J. Andre, eds., Cambridge University Press, 1991.

http://fontforge.org/python.html
http://potrace.sourceforge.net/faq.html

[5] http://msdn.microsoft.com/en-us/library/ms745109(v=vs.110).aspx

[6] André, J., & Vatton, I. (1994) Dynamic optical scaling and variable-sized characters. Electronic

Publishing, 7(4), pp 231-250.

[7] Devroye, L., & McDougall, M. (1995) Random fonts for the simulation of handwriting. Electronic

Publishing (EP—ODD), 8, pp 281-294.

