
1

50 years (1951-2000) of Mumbai Weather data

50 years of weather data recorded at Santa Cruz, Mumbai
is used to create thisvisualization.

Under the Guidance of Prof. Venkatesh Rajamanickam

Baisampayan Saha
136130004

IDC, IIT Bombay

2

A
Data Art
Project

3

A
Data Art
Project

Acknowledgement

I would like to thank my guide Prof. Venkatesh Rajamanickam for proposing
this topic as it was challenging as well as stimulating. I would like to thank
him for supporting me and having patience in me as I was doing my first
data art project.

I would like to thank Rasagy Sharma in helping me out in bits and pieces in
coding when I would get struck.

I would also like to thank Gauri and Kavita for their invaluable suggestions. And
lastly I would like to thank all my friends who helped me out by giving sugges-
tions in improving the project at various phases of the project.

4

Avowal

I asseverate, that the present work has been produced without the help of
third party and only with the denoted references. All parts that have been
taken from sources are indicated. This work has never been presented to an
examination board.

Name:

Roll Number:

Date:

Signature:

5

Approval

Design Research Seminar

“50 years of Mumbai Weather” - By Baisampayan Saha

M.Des, Industrial Design Batch 2013-15, is approved as a partial fulfillment of
requirement of Post Graduate degree in Industrial Design.

Prof. Venkatesh Rajamanickam

6

Abstract

When a large data set is presented in front of us, it does not make any sense to
us until and unless we start doing number crunching. If the data is represented
in some form of charts or diagrams than probably we can figure out something.
Though the project “50 years of Mumbai weather“ is not about data visualiza-
tion, but it deals with the notion of data art. The weather data is taken up and
woven into a fabric of a narration that for each viewer would give an under-
standing of its own. Each viewer could come to an altogether different conclu-
sion of the diagrams shown in front of them and their conclusions be equally
correct as the underlying principles of generating each diagram from the data
set are kept exactly the same.

An attempt is made to generate such diagrams from the weather data of Mum-
bai for each month of the year. When someone would view all the diagrams
together a form of a story would emerge out from the data embedded inside
the diagrams.

Index
Acknowledgement	 3

Avowal	 4

Approval	 5

Abstract	 6

Introduction	 8

Literature Review	 9

50 years of
Mumbai Weather	 12

Bibliography	 53

8

Fig 1: Figure generated from July data points	 10

Fig 2: Examples of generative art using processing from various books	 12

Fig 3: Creation of Noise field by Perlin Noise by Felix Turner (airtightinteractive.com). The bottom two

 pictures are modifications of his code.	 13

Fig 4: First attempt of plotting the weather data	 14

Fig 5: Modifying the code further to include trigonometric functions to ahieve more forms	 15

Fig 6: A screenshot of the application built in processing for generating the patterns	 43

Fig 7: A screenshot of the graph generated in processing	 49

Fig 8: A pattern of the month of January along with the graphs of each month	 50

Fig 9: All the patterns are grouped together along with the graphs of each month	 51

Fig 10.1 : Individual month’s pattern grouped with its corresponding graph	 52

Fig 10.2 : Individual month’s pattern grouped with its corresponding graph	 53

Fig 10.3 : Individual month’s pattern grouped with its corresponding graph	 54

List of Figures

9

10

Introduction

50 years of data of Mumbai weather is first taken from the website of Indian
Meteorological Department website (http://www.imd.gov.in/section/nhac/
mean/Mumbai.htm) The data is sorted out corresponding to each month of the
year, i.e. from January to December.

For depicting the data into various diagrams or charts, an open-source software
application called Processing is used. Processing is a Java based programming
application, which was developed mainly for creating data visualizations and
data art and targeted from designers to engineers to graphic artists alike.

The data from the website is sorted in the form of maximum average tempera-
ture, minimum average temperature and average rainfall for each both for a pe-
riod from 1951 - 2000. The three data points are taken as coordinates of a point
in 3D space. All these points generated by these coordinate points are plotted
in a 3D space and these plotted points are revolved in X-axis and Y-axis of the
3D space and their rotating paths are traced to finally generate the diagrams for
each month.

Fig 1 is an example of diagram generated from July data set.
Fig 1: Figure generated from July data points

11

Literature Review

Data art was a completely new domain of work
for me. There are various ways of generating
data art. Many open-source tools can be found
for generating it. Some needs programming
knowledge and some does not required any
programming knowledge at all. So, the first
thing that I did after beginning the project is to
search a tool that is flexible enough to create
generative data art and also the learning curve
of it is pretty easy. I found out there are various
such tools for it. Most of them are free and
open-source. Few examples are Processing,
Java-script, NodeBox, vvvv, OpenFrameworks,
etc. I choose Processing as the amount of on-
line learning resources of it are too exhaustive
and also i found it little it easier to grasp then
other tools of the trade. So, I started looking

into examples given into processing website.
This helped a lot in understanding the basics
of it. Then I got a book from Prof. Venkatesh
called “Getting started with processing by
Casey Reas and Ben Fry“. This actually helped
me in understanding the tool a lot better. After
reading the book, I started looking into on-
line video tutorials that were there in https://
www.youtube.com, https://vimeo.com and
various other online video sites. The url link
from vimeo website is “http://vimeo.com/
album/2573675”. This has an complete tutorial
of the basic understanding of processing and
also has some advanced stuff in it. The website
“http://funprogramming.org” also provided to
see how other artist used processing as a tool

12

for generating art. Then the website “http://
fyprocessing.tumblr.com/page/12 “opened
up a new dimension for me that showed how
processing can be used to do some of the
most mind-boggling data art and animations.

I got hold of a book called “Algorithms for
Visual Design - Using Processing language
by Kostas Terzidis“ and another book called
“Generatice Art“ that I had found in the web-
site “http://www.scribd.com/doc/239849789/
Generative-Art”. I started practicing the exam-
ples that were given in the book and started
to solve the exercise problems given after the
end of each chapter.

Fig 2 is an example of few of the solved exer-
cise problems.

Fig 2: Examples of generative art using processing from various books

13

After spending some considerate in learning
the basics of processing, I tried to see if i can
modify codes of existing generative art that
can are found in the web and are given the
permission to modify the codes given the
actual artist contribution is also acknowledged.
In one such example was the generative art
shown in Fig 3. This is an example of a noise
field created by using Perlin Noise by artist Felix
Turner. I tried to modify the code and make the
size and shape of the noise field more random
than what he had created. The original one
was much smaller in size and the speed of the
particles were much faster then the modified
one. The last two pictures are the modified
versions of the code, where I had increased the
size of the canvas, increased the randomness
of the particles and also increased the size of
the particles.

Fig 3: Creation of Noise field by Perlin Noise by Felix Turner (airtightinterac-
tive.com). The bottom two pictures are modifications of his code.

14

50 years of
Mumbai Weather

After getting a fair bit of confidence in Processing, I started to look into the data
that we have got from Indian Meteorological Department website. The data was
of 50 years of information about Mumbai weather collected at Santa Cruz weath-
er station. The data comprised of mainly 3 variables: average maximum tem-
perature, average minimum temperature and average rainfall. After thinking for
sometime how can these data be presented into a form of generative art, one
idea struck in. As there are three variables, these can be taken as a coordinates
for a point in 3d space. So if we plot these coordinates we would get points that
would correspond to each months data for a period of fifty years. Now if we can
rotate them in an axis, then these points would generate patterns that would be
different for each month and also the nature of the patterns would be governed
by the same programming logic and the data set collected from the website. So
we would get a correct scientific model of weather data for 50 years that can be
represented by generative art. Fig 4 shows some of the first attempt in plotting
the weather data.Fig 4: First attempt of plotting the weather data

15

Fig 5: Modifying the code further to include trigonometric functions to ahieve more forms

After plotting the points in the 3D space, the
points were rotated in X, Y, Z axis at different
times to see what sort of patterns they create.
The pattern is mainly created as the path of
rotation is traced. So every time a point moves
it leaves behind a trail of the path it is moving,
thus creating a pattern. The rotation of the
points are sometimes put on one single axis or
sometimes clubbed together to either 2 axis or
all the 3 axis.

All possible formats of generating the patterns
were checked. Some patterns were created
where the rotation of the particles around an
axis would depend on a sine or cosine func-
tion. The patterns thus created would be very
different than normal rotation of these points
in the axis. Fig 5 shows some of the patterns
created by using trigonometric functions as
well as multi axis rotation.

16

So finally after many hit and run trials so see
which combination of codes would gener-
ate the best patterns, I decided upon not to
include any trigonometric functions but to
simply rotate the point in X-axis and Y-axis
at the same time. So this resulted in the final
output of the pattern.

But when the pattern were showed to peo-
ple in general, they were not being able to
underdtand or decifer anything. So I thought
another piece of information about the pat-
tern should be included. So for this, I created a
graph, that had all the three variables in it, i.e.
average maximum temperature, average mini-
mum temperature and average rainfall. All the
variables are put in one single graph and their
maximum and minimum values were mapped

to the width and height of the canvas of the
graph. These created a graph where the nature
of the temperature and rainfall for a certain
month can be easily seen. When this graph
was juxtaposed with the generated pattern,
the pattern made much more sense now and
also when all the patterns and the graphs were
shown, a story of Mumbai weather seemed
to come out. The codes of both the pattern
and the graph can be found in github website
“https://github.com/baisampayans/consolidat-
ed_v2_alternate_colors” with the data set used
to create it.

The codes for both the programs can be
found in the next page. Some of the codes are
hashed out as comments. These hashed out
codes can be used to modify the codes again.

17

import processing.pdf.*;

//import peasy.*;

//PeasyCam jCam;

Table table_jan;

Table table_feb;

Table table_mar;

Table table_apr;

Table table_may;

Table table_jun;

Table table_jul;

Table table_aug;

Table table_sep;

Table table_oct;

Table table_nov;

Table table_dec;

int amount = 50;

18

float[] x_jan = new float[amount];

float[] y_jan = new float[amount];

float[] z_jan = new float[amount];

float[] n_jan = new float[amount];

float[] x_feb = new float[amount];

float[] y_feb = new float[amount];

float[] z_feb = new float[amount];

float[] n_feb = new float[amount];

float[] x_apr = new float[amount];

float[] y_apr = new float[amount];

float[] z_apr = new float[amount];

float[] n_apr = new float[amount];

float[] x_mar = new float[amount];

float[] y_mar = new float[amount];

float[] z_mar = new float[amount];

float[] n_mar = new float[amount];

float[] x_may = new float[amount];

19

float[] y_may = new float[amount];

float[] z_may = new float[amount];

float[] n_may = new float[amount];

float[] x_jun = new float[amount];

float[] y_jun = new float[amount];

float[] z_jun = new float[amount];

float[] n_jun = new float[amount];

float[] x_jul = new float[amount];

float[] y_jul = new float[amount];

float[] z_jul = new float[amount];

float[] n_jul = new float[amount];

float[] x_aug = new float[amount];

float[] y_aug = new float[amount];

float[] z_aug = new float[amount];

float[] n_aug = new float[amount];

float[] x_sep = new float[amount];

float[] y_sep = new float[amount];

20

float[] z_sep = new float[amount];

float[] n_sep = new float[amount];

float[] x_oct = new float[amount];

float[] y_oct = new float[amount];

float[] z_oct = new float[amount];

float[] n_oct = new float[amount];

float[] x_nov = new float[amount];

float[] y_nov = new float[amount];

float[] z_nov = new float[amount];

float[] n_nov = new float[amount];

float[] x_dec = new float[amount];

float[] y_dec = new float[amount];

float[] z_dec = new float[amount];

float[] n_dec = new float[amount];

int currentMonth=0;

int stageX = 400;

21

int stageY = 300;

int stageZ = 150;

PFont font1;

PFont font2;

void setup() {

 size(1900, 1200, OPENGL);

 beginRaw(PDF, “x-###.pdf”);

 //*

 //font1 = loadFont(“HelveticaNeue-Light-48.vlw”);

 // font2 = loadFont(“HelveticaNeue-Bold-48.vlw”); //*/

 font1 = createFont(“HelveticaNeue-Bold”, 48);

 font2 = createFont(“HelveticaNeue-Bold”, 48);

 // for camera control with mouse

 //jCam = new PeasyCam(this, 500);

22

 int a = int (random(0, width));

 int b = int (random(0, height));

 //int c = int (random(255));

 float sColor = map(a, 0, width, 0, 100);

 //colorMode(HSB, 100);

 background(0);

 noFill();

 //stroke(sColor,80,90);

 strokeWeight(1);

 smooth();

 // frameRate(14);

 stroke(255, 203, 30);

 line(300, (height/2-90), 300, (height/2+80));

 loadData();

 writeText();

23

 // for randomly creating points in 3D space

 // for(int i = 0; i<amount; i++) {

 // x[i] = int(random(-540, 540));

 // y[i] = int(random(-390, 390));

 // z[i] = int(random(-300, 300));

}

void loadData() {

 // Load CSV file into a Table object

 // “header” option indicates the file has a header row

 table_jan = loadTable(“points_jan.csv”, “header”);

 // You can access iterate over all the rows in a table

 int rowCount = 0;

 for (TableRow row : table_jan.rows ()) {

 // You can access the fields via their column name (or index)

 x_jan[rowCount] = row.getFloat(“Max_temp”);

 y_jan[rowCount] = row.getFloat(“Min_temp”);

 z_jan[rowCount] = row.getFloat(“Rainfall”);

24

 n_jan[rowCount] = row.getFloat(“Year_Jan”);

 rowCount++;

 }

 table_feb = loadTable(“points_feb.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_feb.rows ()) {

 // You can access the fields via their column name (or index)

 x_feb[rowCount] = row.getFloat(“Max_temp”);

 y_feb[rowCount] = row.getFloat(“Min_temp”);

 z_feb[rowCount] = row.getFloat(“Rainfall”);

 n_feb[rowCount] = row.getFloat(“Year_Feb”);

 rowCount++;

 }

 table_mar = loadTable(“points_march.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_mar.rows ()) {

25

 // You can access the fields via their column name (or index)

 x_mar[rowCount] = row.getFloat(“Max_temp”);

 y_mar[rowCount] = row.getFloat(“Min_temp”);

 z_mar[rowCount] = row.getFloat(“Rainfall”);

 n_mar[rowCount] = row.getFloat(“Year_March”);

 rowCount++;

 }

 table_apr = loadTable(“points_april.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_apr.rows ()) {

 // You can access the fields via their column name (or index)

 x_apr[rowCount] = row.getFloat(“Max_temp”);

 y_apr[rowCount] = row.getFloat(“Min_temp”);

 z_apr[rowCount] = row.getFloat(“Rainfall”);

 n_apr[rowCount] = row.getFloat(“Year_April”);

 rowCount++;

 }

 table_may = loadTable(“points_may.csv”, “header”);

26

// You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_may.rows ()) {

 // You can access the fields via their column name (or index)

 x_may[rowCount] = row.getFloat(“Max_temp”);

 y_may[rowCount] = row.getFloat(“Min_temp”);

 z_may[rowCount] = row.getFloat(“Rainfall”);

 n_may[rowCount] = row.getFloat(“Year_May”);

 rowCount++;

 }

 table_jun = loadTable(“points_june.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_jun.rows ()) {

 // You can access the fields via their column name (or index)

 x_jun[rowCount] = row.getFloat(“Max_temp”);

 y_jun[rowCount] = row.getFloat(“Min_temp”);

 z_jun[rowCount] = row.getFloat(“Rainfall”);

 n_jun[rowCount] = row.getFloat(“Year_June”);

 rowCount++;

27

}

 table_jul = loadTable(“points_july.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_jul.rows ()) {

 // You can access the fields via their column name (or index)

 x_jul[rowCount] = row.getFloat(“Max_temp”);

 y_jul[rowCount] = row.getFloat(“Min_temp”);

 z_jul[rowCount] = row.getFloat(“Rainfall”);

 n_jul[rowCount] = row.getFloat(“Year_July”);

 rowCount++;

 }

 table_aug = loadTable(“points_aug.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_aug.rows ()) {

 // You can access the fields via their column name (or index)

 x_aug[rowCount] = row.getFloat(“Max_temp”);

 y_aug[rowCount] = row.getFloat(“Min_temp”);

28

 z_aug[rowCount] = row.getFloat(“Rainfall”);

 n_aug[rowCount] = row.getFloat(“Year_August”);

 rowCount++;

 }

 table_sep = loadTable(“points_sep.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_sep.rows ()) {

 // You can access the fields via their column name (or index)

 x_sep[rowCount] = row.getFloat(“Max_temp”);

 y_sep[rowCount] = row.getFloat(“Min_temp”);

 z_sep[rowCount] = row.getFloat(“Rainfall”);

 n_sep[rowCount] = row.getFloat(“Year_September”);

 rowCount++;

 }

 table_oct = loadTable(“points_oct.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_oct.rows ()) {

29

// You can access the fields via their column name (or index)

 x_oct[rowCount] = row.getFloat(“Max_temp”);

 y_oct[rowCount] = row.getFloat(“Min_temp”);

 z_oct[rowCount] = row.getFloat(“Rainfall”);

 n_oct[rowCount] = row.getFloat(“Year_October”);

 rowCount++;

 }

 table_nov = loadTable(“points_nov.csv”, “header”);

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_nov.rows ()) {

 // You can access the fields via their column name (or index)

 x_nov[rowCount] = row.getFloat(“Max_temp”);

 y_nov[rowCount] = row.getFloat(“Min_temp”);

 z_nov[rowCount] = row.getFloat(“Rainfall”);

 n_nov[rowCount] = row.getFloat(“Year_November”);

 rowCount++;

 }

 table_dec = loadTable(“points_dec.csv”, “header”);

30

 // You can access iterate over all the rows in a table

 rowCount = 0;

 for (TableRow row : table_dec.rows ()) {

 // You can access the fields via their column name (or index)

 x_dec[rowCount] = row.getFloat(“Max_temp”);

 y_dec[rowCount] = row.getFloat(“Min_temp”);

 z_dec[rowCount] = row.getFloat(“Rainfall”);

 n_dec[rowCount] = row.getFloat(“Year_December”);

 rowCount++;

 }

 // println();

 //*/

}

void draw() {

 // smooth();

31

//background(0);

 // int a = int (random(0, width));

 // int b = int (random(0, height));

 // int c = int (random(255));

 // float sColor = map(a, 0, width, 0, 100);

 // stroke(sColor, 80, 90);

 //color(random(0,255), random(0,255), random(0,255));

 pushMatrix();

 translate(width/2, height/2);

 rotateY(frameCount/100.0);

 //rotateZ(frameCount /100.0);

 rotateX(frameCount/100.0);

 //box(300);

 for (int i = 0; i<amount; i++) {

32

 if (currentMonth==1) {

 point(map(x_jan[i], 0, 50, -stageX, stageX), map(y_jan[i], 0, 30, -stageY, stageY),
map(z_jan[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==2) {

 point(map(x_feb[i], 0, 50, -stageX, stageX), map(y_feb[i], 0, 30, -stageY, stageY),
map(z_feb[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==3) {

 point(map(x_mar[i], 0, 50, -stageX, stageX), map(y_mar[i], 0, 30, -stageY, stag-
eY), map(z_mar[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==4) {

 point(map(x_apr[i], 0, 50, -stageX, stageX), map(y_apr[i], 0, 30, -stageY, stageY),
map(z_apr[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==5) {

 point(map(x_may[i], 0, 50, -stageX, stageX), map(y_may[i], 0, 30, -stageY, stag-
eY), map(z_may[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==6) {

 point(map(x_jun[i], 0, 50, -stageX, stageX), map(y_jun[i], 0, 30, -stageY, stageY),
map(z_jun[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==7) {

 point(map(x_jul[i], 0, 50, -stageX, stageX), map(y_jul[i], 0, 30, -stageY, stageY),
map(z_jul[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==8) {

 point(map(x_aug[i], 0, 50, -stageX, stageX), map(y_aug[i], 0, 30, -stageY, stag-
eY), map(z_aug[i], 0, 700, -stageZ, stageZ));

33

} else if (currentMonth==9) {

 point(map(x_sep[i], 0, 50, -stageX, stageX), map(y_sep[i], 0, 30, -stageY, stag-
eY), map(z_sep[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==10) {

 point(map(x_oct[i], 0, 50, -stageX, stageX), map(y_oct[i], 0, 30, -stageY, stageY),
map(z_oct[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==11) {

 point(map(x_nov[i], 0, 50, -stageX, stageX), map(y_nov[i], 0, 30, -stageY, stag-
eY), map(z_nov[i], 0, 700, -stageZ, stageZ));

 } else if (currentMonth==12) {

 point(map(x_dec[i], 0, 50, -stageX, stageX), map(y_dec[i], 0, 30, -stageY, stag-
eY), map(z_dec[i], 0, 700, -stageZ, stageZ));

 }

 }

 popMatrix();

}

void keyPressed() {

 // if (key == ‘s’) {

 // saveFrame(“saved-3/”+currentMonth+”-#.png”);

34

// }

 writeText();

 if (key == ‘1’) {

 stroke(39, 169, 225);

 currentMonth = 1;

 } else if (key == ‘2’) {

 stroke(0, 167, 157);

 currentMonth = 2;

 } else if (key == ‘3’) {

 stroke(0, 147, 68);

 currentMonth = 3;

 } else if (key == ‘4’) {

 stroke(56, 180, 73);

 currentMonth = 4;

 } else if (key == ‘5’) {

 stroke(140, 198, 62);

 currentMonth = 5;

 } else if (key == ‘6’) {

 stroke(214, 223, 35);

35

vv currentMonth = 6;

 } else if (key == ‘7’) {

 stroke(248, 237, 49);

 currentMonth = 7;

 } else if (key == ‘8’) {

 stroke(251, 175, 63);

 currentMonth = 8;

 } else if (key == ‘9’) {

 stroke(247, 147, 29);

 currentMonth = 9;

 } else if (key == ‘a’) {

 stroke(240, 90, 40);

 currentMonth = 10;

 } else if (key == ‘b’) {

 stroke(239, 64, 54);

 currentMonth = 11;

 } else if (key == ‘c’) {

 stroke(27, 117, 187);

 currentMonth = 12;

 }

}

36

void writeText() {

 if (key == ‘1’ || key == ‘2’ || key == ‘3’ || key == ‘4’ || key == ‘5’ || key == ‘6’ || key ==
‘7’ || key == ‘8’ || key == ‘9’ || key == ‘a’ || key == ‘b’ || key == ‘c’) {

 background(0);

 stroke(255, 203, 30);

 line(300, (height/2-90), 300, (height/2+80));

 }

 // line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 //*

 if (key == ‘1’) {

 currentMonth = 1;

 textSize(24);

 text(“January”, (width-125), (height/2));

 textSize(60);

 text(“1”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘2’) {

37

textSize(24);

 text(“February”, (width-130), (height/2));

 textSize(60);

 text(“2”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘3’) {

 textSize(24);

 text(“March”, (width-115), (height/2));

 textSize(60);

 text(“3”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘4’) {

 textSize(24);

 text(“April”, (width-105), (height/2));

 textSize(60);

 text(“4”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘5’) {

 textSize(24);

 text(“May”, (width-105), (height/2));

 textSize(60);

38

text(“5”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘6’) {

 textSize(24);

 text(“June”, (width-105), (height/2));

 textSize(60);

 text(“6”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘7’) {

 textSize(24);

 text(“July”, (width-105), (height/2));

 textSize(60);

 text(“7”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘8’) {

 textSize(24);

 text(“August”, (width-120), (height/2));

 textSize(60);

 text(“8”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘9’) {

39

textSize(24);

 text(“September”, (width-140), (height/2));

 textSize(60);

 text(“9”, (width-95), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘a’) {

 textSize(24);

 text(“October”, (width-125), (height/2));

 textSize(60);

 text(“10”, (width-110), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘b’) {

 textSize(24);

 text(“November”, (width-138), (height/2));

 textSize(60);

 text(“11”, (width-105), (height/2 + 82));

 line ((width - 145), (height/2 + 18), (width - 20), (height/2 + 18));

 } else if (key == ‘c’) {

 textSize(24);

 text(“December”, (width-142), (height/2));

 textSize(60);

40

 text(“12”, (width-110), (height/2 + 82));

 line ((width - 140), (height/2 + 18), (width - 20), (height/2 + 18));

 }

 textFont(font1, 18);

 // fill(#B5B5B1);

 fill(255);

 text(“Press”, 40, (height/2 - 80));

 textFont(font2, 18);

 fill(255, 203, 30);

 text(“1 “, 95, (height/2 - 80));

 textFont (font1, 18);

 fill(255);

 text(“to”, 112, (height/2 - 80));

 textFont(font2, 18);

 fill(255, 203, 30);

 text(“9”, 138, (height/2 - 80));

 textFont(font1, 18);

 fill(255);

41

 text(“and “, 158, (height/2 - 80));

 textFont(font2, 18);

 fill(255, 203, 30);

 text (“a, b, c”, 198, (height/2 - 80));

 textFont(font1, 18);

 fill(255);

 text(“to toggle between different “, 40, (height/2-40));

 text(“months’s”, 40, (height/2));

 textFont(font2, 18);

 fill(255, 203, 30);

 text(“visualisation”, 130, (height/2));

 text(“Click”, 40, (height/2 + 80));

 fill(255);

 textFont(font1, 18);

 text(“to save a”, 90, (height/2 + 80));

 textFont(font2, 18);

 fill(255, 203, 30);

 text (“frame”, 170, (height/2 + 80));

 //*/

}

42

void mousePressed() {

 endRaw();

 //background(0);

 //saveFrame(“saved-2/”+currentMonth+”-##.png”);

 // int a = int (random(0, width));

 // int b = int (random(0, height));

 // //int c = int (random(255));

 // float sColor = map(a, 0, width, 0, 100);

 // stroke(sColor, 80, 90);

}

Fig 6 at the next page is a screenshot of the application that is made by compil-
ing the code written above.

43

Fig 6: A screenshot of the application built in processing for generating the patterns

44

The code for generating the graph for each month is given below. The code
below is for generating the graph of January month.

import processing.pdf.*;

Table table;

int amount = 51;

PVector[] positions_x = new PVector[amount];

PVector[] positions_y = new PVector[amount];

PVector[] positions_z = new PVector[amount];

float[] x = new float[amount];

float[] y = new float[amount];

float[] z = new float[amount];

String[] n = new String[amount];

void setup() {

 size(1080, 780, OPENGL);

 beginRaw(PDF, “x-###.pdf”);

 background(0);

 noFill();

 strokeWeight(.5);

 smooth();

 loadData();

45

graphData();

}

void loadData() {

 // Load CSV file into a Table object

 // “header” option indicates the file has a header row

 table = loadTable(“points_jan.csv”, “header”);

 // You can access iterate over all the rows in a table

 int rowCount = 0;

 for (TableRow row : table.rows ()) {

 // You can access the fields via their column name (or index)

 x[rowCount] = row.getFloat(“Max_temp”);

 y[rowCount] = row.getFloat(“Min_temp”);

 z[rowCount] = row.getFloat(“Rainfall”);

 n[rowCount] = row.getString(“Year_Jan”);

 rowCount++;

 }

}

void draw() {

 for (int i = 0; i<amount; i++) {

 fill(#FC4349);

46

noStroke();

 ellipse(positions_x[i].x, positions_x[i].y, 10, 10);

 fill(#314678);

 ellipse(positions_y[i].x, positions_y[i].y, 10, 10);

 fill(#D7DADB);

 ellipse(positions_z[i].x, positions_z[i].y, 10, 10);

 stroke(255, 255, 255, 2);

 line (positions_x[i].x, positions_x[i].y, positions_z[i].x, positions_z[i].y);

 }

}

void graphData() {

 float xMin = 0.0;

 float xMax = 35.0;

 float yMin = min(y);

 float yMax = max(y);

 float zMin = 0.0;

 float zMax = 1500.0;

47

// println(xMin);

 // println(xMax);

int margin = 50;

 int graphHeight = height - margin * 2;

 int xGutter = width - margin * 2;

 for (int i = 0; i < amount; i++) {

 // mapping x, y, z according to the coordinates of the graph size

 float xMap = map (x[i], xMin, xMax, 0, graphHeight);

 float xYPos = height - margin - xMap;

 float xXPos = margin*i/2.7 + width/12;

 float yMap = map (y[i], xMin, xMax, 0, graphHeight);

 float yYPos = height - margin - yMap;

 float yXPos = margin*i/2.7 + width/12;

 float zMap = map (z[i], zMin, zMax, 0, graphHeight);

 float zYPos = height - margin - zMap;

 float zXPos = margin*i/2.7 + width/12;

 positions_x[i] = new PVector(xXPos, xYPos);

 positions_y[i] = new PVector(yXPos, yYPos);

 positions_z[i] = new PVector(zXPos, zYPos);

 }

}

48

void mousePressed() {

 endRaw();

 // background(0);

 //saveFrame(“save1/line-####.png”);

 // int a = int (random(0, width));

 // int b = int (random(0, height));

 // //int c = int (random(255));

 // float sColor = map(a, 0, width, 0, 100);

 // stroke(sColor, 80, 90);

}

Fig 7 is a screenshot of the graph when generated by compiling the code
in processing.

A list of compiled images are shown in the next few pages that has all the pat-
terns and graphs grouped togeher.

49

Fig 7: A screenshot of the graph generated in processing

Fig 8: A pattern of the month of January along with the graphs of each month50

Fig 9: All the patterns are grouped together along with the graphs of each month 51

Fig 10.1 : Individual month’s pattern grouped with its corresponding graph

52

Fig 10.2 : Individual month’s pattern grouped with its corresponding graph

53

Fig 10.3 : Individual month’s pattern grouped with its corresponding graph

54

55

Bibliography
[1] 	 Creative code: Exploring Generative System to Create Art.

[2] 	 CHIMERA.LABS.OREILLY.COM
	 Interactive Data Visualization for the Web
	 In-text: (Chimera.labs.oreilly.com, 2015)
	 Bibliography: Chimera.labs.oreilly.com, (2015). Interactive Data Visu		
	 alization for the Web. [online] Available at: http://chimera.labs.oreilly.com/	
	 books/1230000000345/index.html [Accessed 4 Dec. 2014].

[3] 	 CODING TUTORIALS AND BOOKS
	 In-text: (Coding tutorials and books, 2015)
	 Bibliography: Coding tutorials and books. (2015). [online] Available at: 		
	 http://p5art.tumblr.com/tutorials [Accessed 10 Dec. 2014].

56

[4] 	 FYPROCESSING.TUMBLR.COM
	 For Your Processing
	 In-text: (Fyprocessing.tumblr.com, 2015)
	 Bibliography: Fyprocessing.tumblr.com, (2015). For Your Processing. [on	
	 line] Available at: http://fyprocessing.tumblr.com/page/12 [Accessed 9 	
	 Nov. 2014].

[5] 	 SCHUELLER, A.
	 Introduction to Processing: June 2013
	 In-text: (Schueller, 2013)
	 Bibliography: Schueller, A. (2013). Introduction to Processing: June 2013. 	
	 [online] Introprocessing.blogspot.in. Available at: http://introprocessing.	
	 blogspot.in/2013_06_01_archive.html [Accessed 8 Dec. 2014].

[6] 	 BOHNACKER, H., GROSS, B., LAUB, J. AND LAZZERONI, C.
	 Generative design
	 In-text: (Bohnacker et al., 2012)
	 Bibliography: Bohnacker, H., Gross, B., Laub, J. and Lazzeroni, C. (2012). 		
	 Generative design. New York: Princeton Architectural Press.

[7] 	 FRY, B.
	 Visualizing data
	 In-text: (Fry, 2008)
	 Bibliography: Fry, B. (2008). Visualizing data. Beijing: O’Reilly Media, Inc.

57

[8] 	 GREENBERG, I., XU, D. AND KUMAR, D.
	 Processing
	 In-text: (Greenberg, Xu and Kumar, 2013)
	 Bibliography: Greenberg, I., Xu, D. and Kumar, D. (2013). Processing.
	 Berkeley, Calif.: Friends of Ed.

[9] 	 PEARSON, M.
	 Generative art
	 In-text: (Pearson, 2011)
	 Bibliography: Pearson, M. (2011). Generative art. Shelter Island,
	 NY: Manning.

[10] 	 REAS, C. AND FRY, B.
	 Processing
	 In-text: (Reas and Fry, 2007)
	 Bibliography: Reas, C. and Fry, B. (2007). Processing. Cambridge,
	 Mass.: MIT Press.

[11] 	 TERZIDIS, K.
	 Algorithms for visual design using the Processing language
	 In-text: (Terzidis, 2009)
	 Bibliography: Terzidis, K. (2009). Algorithms for visual design using the 	
	 Processing language. Indianapolis, IN: Wiley Pub.

	Acknowledgement
	Avowal
	Approval
	Abstract
	Introduction
	Literature Review
	50 years of
Mumbai Weather
	Bibliography
	Fig 1: Figure generated from July data points
	Fig 2: Examples of generative art using processing from various books
	Fig 3: Creation of Noise field by Perlin Noise by Felix Turner (airtightinteractive.com). The bottom two pictures are modifications of his code.
	Fig 4: First attempt of plotting the weather data
	Fig 5: Modifying the code further to include trigonometric functions to ahieve more forms
	Fig 6: A screenshot of the application built in processing for generating the patterns
	Fig 7: A screenshot of the graph generated in processing
	Fig 8: A pattern of the month of January along with the graphs of each month
	Fig 9: All the patterns are grouped together along with the graphs of each month
	Fig 10.1 : Individual month’s pattern grouped with its corresponding graph
	Fig 10.2 : Individual month’s pattern grouped with its corresponding graph
	Fig 10.3 : Individual month’s pattern grouped with its corresponding graph

