Introduction

The Need

Most rural people in India both men and women defecate in the open they are seen squatting by the side of the road. India's high rate of open defecation takes the lives of hundreds of thousands of children each year. Children lose their life to diarrhea and other water borne diseases (Ref 1). Children who defecate in the open have the tendency of catching diseases sooner than the children who use latrines, these children are weak and are unable to grow to their full physical and cognitive potential. Although many people who defecate in the open think it is harmless, or maybe even good for them, they are wrong: the negative consequences of open defecation are a very big deal and can take their life because of the diseases it causes. Also women need privacy and extra hygiene to prevent themselves from various infections. Therefore it has becomes necessary to design and develop a low cost, simple and hygienic sanitation system. Educating people about the importance of good sanitation for their health and well being is very important.

Motivation of the project

In recent days, open defecation has been in the news because it is hoped that building toilets could reduce rape. Sexual violence in India is a tragedy. Survey conducted on thousands of rural households, men and women separately what they thought about toilets shows that using a latrine does appear to be more important to women than to men: in households with a latrine, women are more likely to use it than men. One reason may be that most of such women can only go out for defecation early in the morning or after dark, while most men face no such social constraints (Ref 2). Women go to the farms in a group so that one can keep a watch while the other is defecating. This does not only create a safety issue but also various health issues. Women require a lot of hygiene an privacy than men and they cannot go out alone in the open. This makes them dependent on others for such a basic need of using the toilet whenever they want. Such cases have highlighted the need to make a design intervention that would help people particularly women and children reap in the benefits of sanitation structure, which acted as the motivation of the project.

Initial design brief

To design a structure for sanitation for the rural areas.

- Low-cost structure.
- Parts should be easily replaceable.
- Local material.
- Low cost.

Scope of the project

This toilet structure design in the rural areas will eliminate the spread of diseases . Women will get the privacy they require and they won't have to depend on others to go to the toilet.

This toilet structure is meant for individual use or a small group of people living in the same house. This structure is made using rural material which makes it easily repairable, it can be easily carried by a person and deployed.

Features not addressed are:

- The fixing of the squatting pot along with the base structure.
- The disposal of waste excreta.

Design direction

After finalizing on the design brief, the various possible approaches or design directions to proceed in the project were jotted down, of which the 3 most prominent directions were:

- •Usage of local material.
- •Can be constructed locally.
- Easily deployable.

Of the above stated design direction, a rural approach was taken up, with an intention of taking up a design challenge that would help to solve the problem to sanitation in the rural areas.

Design process followed

After the conception of the project area, the following steps were used to come up with a feasible end product:

Understanding of the project area:

Brief discussions with the guide were held where the area of work was focused down to a refined area, in that regard ample research on the sanitation situations and structures across India were studied to increase the knowledge base about the project area.

User details, material choices, ergonomics, existing products data, etc were collected which was later on helped understanding intricacies of the project and opened avenues for new opportunities.

During the study and data collection understanding the pros and cons of the sanitation situation in the rural areas of India was a important aspect of the project progress.

Advantages of having a toilet:									
Comfort									
Privacy									
Hygiene									
Odour control									
Convenience									
Indoor use									
Waste management									
Disadvantages of having a toilet:									
Lack of proper care and maintenance.									
Improperly or poorly maintained systems can lead to odors, insects, and health hazards.									

Tackling the initial obstacles:

The biggest challenge in the project was coming up with a solution that would cater to the sanitation needs of rural India keeping all the limitations in mind such as the weather conditions, grounding of the toilet, usage of rural material, deployable, product life etc. Considering all the above limitations the focus area changed to only the structure for sanitation. The design would include only the toilet structure and its joining details. The disposal of waste, squatting pot, waste pit, water connections are factors that have not been considered in this project. The structure would be Low-cost in terms of its life cycle (3-5 years) and also that it can be fixed where ever needed and can be folded and kept or carried when not required. Its made using rural material which makes it extremely local and the parts can be easily replaced incase of any damage.

Choosing the target users:

Based on the research, the target users chosen were-

Low-cost dwellers of rural India, slums, Household usage

Proposal of design brief:

Based on the insights obtained from the data collection, a few changes were made in the design brief, to get clarity of project structure.

• Finding the design directions:

Domestic (household) approach.

Local methods(product made using locally available materials)

Classification of the project area:

Based on the design directions the classifications made were broadly of two types:

System Level-permanent sanitation structure.

Low-cost(on the move)—products for population on the move, Low-cost dwellers, slums, etc.

Due to constraints like duration of project and resources available, the Low-cost(on the move) classification was chosen.

Idea generation:

After the design directions and classifications were finalized, ideas were generated. A parallel product study and material study was done which helped in understanding the rural situation and made it easy to generate ideas.

Refinement of design brief:

At every stage of the project a new interesting avenue opened up, which improved the functionality and feasibility of the product—but also meant the design brief had to be modified many times.

• Concept generation:

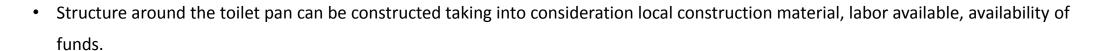
After the ideas were made, the best of the ideas were taken together and structured in a manner that would give a workable concept at the end of the project.

Finalizing the concept:

After the concepts are generated, a detailed concept evaluation is made over the most important features that is needed in the product and how each concept fare over the other. The winning concept is then finalized.

Mock-up phase:

In order to understand the look, feel and working of the product, many mockups were built.


• Detailing of the product:

Before making the functional prototype a detailing of the product was made and finalized, which highlighted the flaws in the design, this lead to a more refined detailing in the further stages of the project.

• Material consideration:

A variety of materials were studied and considered for making the final structure. Both pros & cons of every material was studies carefully. Keeping all the factors in mind "Bamboo" was the proposed material for the final product as it is light weight, locally available, can be easily replaced, strong enough for making a structure, not expensive.

Factors taken into consideration for constructing the toilet structure

- Materials that can be used for constructing the structure of the toilet to create privacy are as follows:-
- Bamboo
- > Cloth
- > Nylon fiber
- Plywood
- Cement Sheet
- > FRP panels
- Red Bricks
- Vegetation
- Galvanized panels

Bamboo and Cloth

Bamboo can be used in various ways.

- Advantages :-
- > Can be locally constructed.
- Structural framework can be done by bamboo sticks and it can be covered by weaving bamboo mats.
- > Parts easily replaceable.
- Disadvantages :-
- > Bamboo has a short life span.

http://1.bp.blogspot.com/-MtiH9XlqzTo/UHkMImqhfZI/AAAAAAAKIM/IY Y9 EjflrM/s1600/small+bamboo+house+7.jpg

http://3.imimg.com/data3/YG/KY/MY-4735195285/bmb-500x500.jpg

Cloth or any fabric are another materials that can be effectively used.

- Advantages:-
- > It is a cost effect material.
- > Can be easily changed or replaced as and when needed.
- Readily available.
- Frame can be made with some other material and cloth can be used to cover the frame to form the structure.
- Disadvantages :-
- > Life span of such structure would be less than one season.
- Cloth can tear easily.
- It would keep needing repairs and replacements.
- > The structure won't be very strong.

http://www.remodelista.com/files/styles/733_0s/public/img/sub/uimg/01-2012/canvas-drop-cloth.png

Nylon fiber and Plywood

Nylon fiber is also know as tent material. Small tent are made of nylon.

- Advantages
- > It is waterproof
- Light weight
- Durable
- > Easily available
- ➤ Low cost
- Disadvantages
- > sunlight can shorten the life of the material

Marine plywood can be used to make the structure.

- Advantages :-
- Can be locally constructed.
- Plywood or marine plywood can be used to make the wall of the toilet the frame can be made by using aluminum frames or channels.
- Plywood is readily available and not very expensive.
- Disadvantages :-
- Plywood may catch termites or insects which can make the structure weak
- Plywood tends to get spoilt during rains.
- Life span is very less.
- Normal plywood lasts for a year and marine plywood lasts for 2-3 years

http://www.finixia.com/commerce/wp-content/uploads/2014/02/PLYWOOD MARINE.jpg

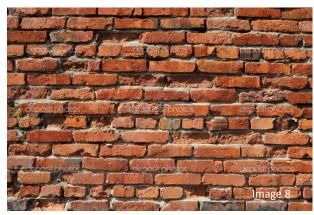
Cement Sheet and FRP Panel

Cement sheet can also be used.

- Advantages :-
- > Can be locally constructed.
- > Structure can be made of cement panels
- > Cement panels of different widths are readily available.
- Disadvantages :-
- Life span of the panel in very short. Between 3-5 yrs depending on the usage.

http://www.rolextimber.com/index htm files/304.jpg

FRP panels can be joined together to make the structure of the toilet.


- Advantages :-
- > FRP panels are clipped together using metal clips to make the toilet structure
- Life span of this material is more than 20yrs.

Red Bricks and Vegetation

Red brick walls can be made.

- Advantages :-
- > Can be locally constructed.
- Material readily available
- Construction cost is not very expensive.
- Disadvantages :-
- > It will be a fixed , permanent structure
- Life span is very long.

http://static6.depositphotos.com/1000681/607/i/950/depositphotos 6071168-old-red-brick-wall-background.jpg

Plants can be grown in such a way that it covers the entire area.

- Advantages:-
- > Can be locally planted.
- > It is the most simple and cost effective way of making a toilet structure
- Disadvantages :-
- > There is a little less privacy in such types of toilets.
- Plus there are chance of animals coming since it's very open.

https://www.arborday.org/trees/privacyhedge/graphics/photo s/1.jpg

Field Study

- Name Mirkutwadi, Sangdewadi district, Maharashtra.
- **NO. of houses** 70
- Population- 350 to 400. (male population is more)
- Main Occupation Used to be agriculture and fishing.
- Current occupation Low-cost workers at adlabs imagica.
- Per day salary Rs 250
- The village community is head by the sarpanch (village head man) who is elected every 5 years by the members of the village.

Field Study

Current village scenario:

- There no toilets in the village.
- The villagers go to the farms to defecate.
- Men and children go at anytime during the day.
- Women usually go in a group or early in the morning when everyone is asleep.
- As compared to the men, children and women often catch an infection or have other heath issues due to unhygienic sanitation.

Existing rural toilets in India

http://listdose.com/10-things-that-are-stopping-indiafrom-development/

https://www.hands4africa.org/Sanitation/toile ts.html

http://www.ruralhousingnetwork.in/ technical/eco-san-toilets-forindividual-households/Introduction

http://www.elamjung.com/local_view. php?id=1298

http://srffoundation.wordpress.com/tag/toilets/

Existing Low-cost sanitation structure Study

http://farm4.staticflickr.com/3247/2730779169 d5887e3c88 m.jpg

These toilets are positioned over the canals.

They are Low-cost toilets and cab be placed over any canal and used directly. The idea behind this toilet is to dispose of the waste directly into the sewage. This has a lot of disadvantages. During the rains these canals overflow leading to a lot of dirt which causes diseases and infections

http://toiletsoftheworldbook.com/wp-content/uploads/2009/08/201_IND_tent.jpg

This is a Low-cost toilet tent erected using cloths and saris of the Indian women. It contains a concrete slab with a small hole, placed over a dugout with two tiny footpads on either side. This toilet is nothing more than a shallow indent in the ground.

Existing Low-cost sanitation structure

http://www.aljazeera.com/mritems/Images/2013/10/25/20131025151112470580_20.jpg

This is a Low-cost toilet made of bamboo poles and covered with poly propylene plastic. It is placed in the lake to dispose of the waste directly into the lake. This creates unhygienic situations as the same lake water is used for several other purposes like bathing, washing clothes etc. this leads to a not of diseases and infections

 $\frac{\text{http://www.bloomberg.com/bw/articles/2013-09-09/in-india-a-toilet-shortage-drains-the-economy}}{\text{economy}}$

This is a Low-cost sanitation structure in the slums. It is made of materials that the slum people could use and find. Like they have used a broken door as a path to enter the toilet. It is placed in the sewage canal.

Existing Low-cost sanitation structure

This is a Low-cost toilet installed in the villages of India. Made of FRP. It has a pit below it where the waste is decomposed. It requires constant cleaning & maintenance. This toilet has a squatting pot and is also called a bio- toilet.

http://media.newindianexpress.com/article589265.ece/alternates/w620/bio-toilets-PTI.jpg

Existing Low-cost sanitation structure

http://geekologie.com/2013/05/03/urine-hay-compost.jpg

This is a urinal only for men. It has plastic containers attached to a bundle of hay. Men come a urinate in the containers and it gets collected in the hay and dries of due to the heat of the sun as its kept in the open without causing bad odor.

http://www.campist.com/archives/stinky-pete-shower-toilet-tent.jpg

This is a Low-cost toilet tent. It is portable, can be carried easily from one place to another. It can be folded and kept when not in use. Mostly used by travelers.

Insights From Parallel Product Study

The research on various Low-cost toilet structures available gave an overview of possibilities with the area chosen for the project.

Few insights obtained from the study are as listed below:

- •Understanding the current sanitation situation
- •Material, manufacturing & installation of the Low-cost sanitation structure
- •Usage of local material technology in building the structure in a way that it enhances the aesthetic value of the product.

The knowledge got from doing the product study gave an opportunity to get clarity in understanding the current situation and also helped in creating new concept.

Design brief

Based on the research and analysis done the area of designing was narrowed down to a precise design brief.

DESIGN BRIEF:

"Low Cost sanitation structure for the rural areas in India". Structure had to be Low-cost in terms of its life cycle and also that it can be fixed where ever needed and can be unfixed and moved or kept when not in use. It should be made using rural materials that are easily available locally. Part should be easily replaceable, easy to repair & maintained locally without being dependent on industrial tools and processes. The structure should be low cost and easy to deploy.

The structure should have the following features:

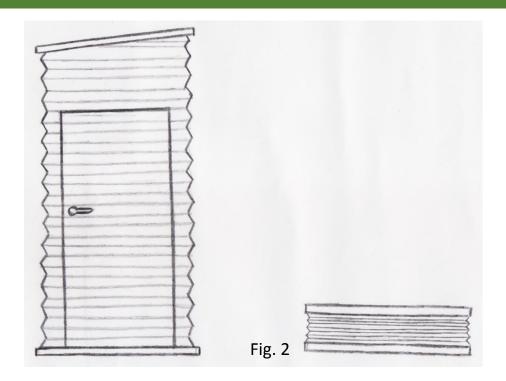
- Rural material.
- Light weight.
- Low-cost structure.
- Parts can be easily replaced, repaired & maintained locally.
- Low cost.
- Easy to deploy.
- Good stability

Target users

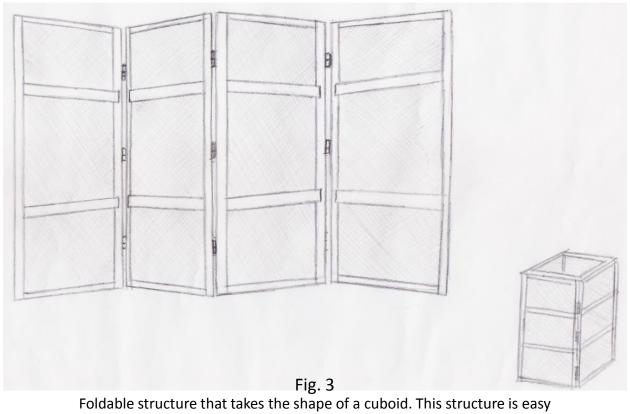
The target users were primarily the people of rural India particularly women and children. Women need privacy and extra hygiene to prevent themselves from various infections. Thousands of Children in India lose their life to diarrhea and other water borne diseases each year due to open defecation. Hence the focus of the project was to design a Low-cost structure for sanitation for the users living in a Low-cost dwelling in the rural area or in the slums.

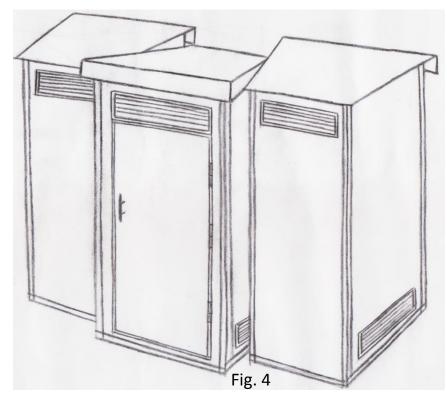

A system level change to the permanent dwellers of rural India would mean a government intervention, large investment and more time would be required to look into various details which is not favored in the project period.

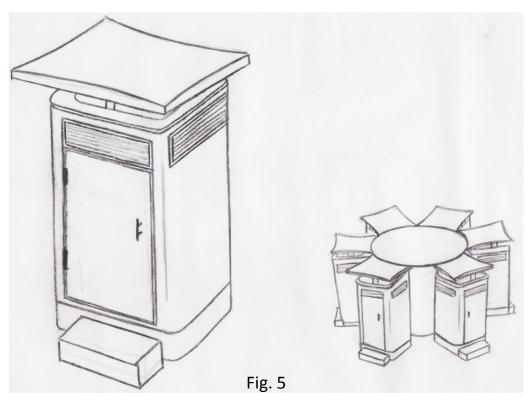
Ideations

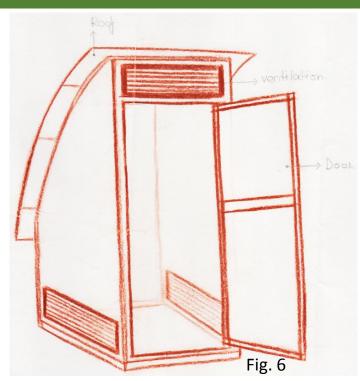

Based on the analysis done on the parallel product study, target users and refined design brief, ideations were made taking into consideration of the various possible creative solutions.

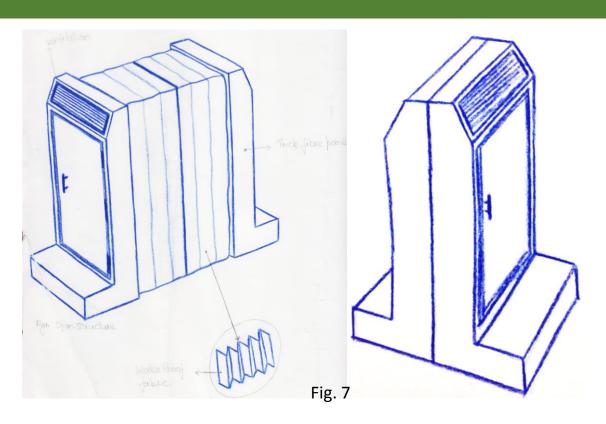
Ideations first started with sketching without ruling out any concept as impossible. These ideas were later refined more and more based on logical reasoning and feasibility aspects.


More refined ideations were made after many alterations, which very evidently started taking the form of product with many feasible aspects.


Circular Collapsible toilet. This toilet structure is portable and can be easily carried from one place to another. It can be folded and kept in a box (as shown in fig.1) when not in use. This particular toilet structure design was inspired by the foldable clothes laundry bag.


Collapsible toilet. Collapses and takes a shape of a box (as shown in fig.2) It is easy to carry. Can be folded and kept when not in use.


Foldable structure that takes the shape of a cuboid. This structure is easy to package as it can be folded in a door like pattern when not in use. It can be carried from one place to another and is very easy to assemble and disassemble.


Modular toilet design with a tilted roof to prevent the collection of dust and water on top. It has 4 ventilation ducts. 2 on each of the lower side of the toilet, one on top of the door and 1 on the back. This toilet was designed in a way that it could form a pattern incase 4-5 toilets were to be placed together.

Modular toilet design was designed in a way that it formed a circular pattern incase 4-5 toilet were place side by side. It has 3 ventilation ducts 1 on the door and 2 on each of the sides (as shown in fig. 4) it also as an elevated rooftop that provided natural light during the day and fresh air

Parts can be easily assembled and disassembled. Structure is made of glass reinforced plastic(GRP). It is durable, light weight, waterproof and economical. It is easy to clean and maintain. Toilet structure has an extremely sloping roof which prevents the collection of dirt/dry leaves and water during rains. The structure has 3 ventilation duct 1 on its top front and two on its bottom side

This structure is collapsible. It can be closed when not in use, this saves space and makes it easy to transport it. The collapsible portion of the structure is made of water proof fabric that protects against heat and rains and also provides cover. The structure has 1 ventilation duct on its top front

Mockups (phase 1)

Mockups (phase 1)

Image 28

Image 29

Made using chart paper and mount board. This mock up is trying to depict the structure that is made of wooden panel and is covered with bamboo mat. It has an uplifted roof for ventilation.

Image 32 Image 31 Made using mount board. This mockup is trying to depict the

structure that is made using a bamboo mat in a circular pattern and also has a sliding door. It has an uplifted roof for ventilation.

Image 33

Image 34

Image 35

Made using styrene and cloth. This mockup is trying to depict structure that is made up bamboo poles that is covered with poly propylene plastic or nylon cloth. This structure had a sloping roof to avoid collection of water and other waste. The roof was uplifted to provide ventilation.

Mockups

Made using sun board and mount board. This mockup is trying to depict a Structure that is made of glass reinforced plastic(GRP). It is durable, light weight, waterproof and economical. It is easy to clean and maintain. Toilet structure has an extremely sloping roof which prevents the collection of dirt/dry leaves and water during rains. The structure has 3 ventilation duct 1 on its top front and two on its bottom side.

Image 39

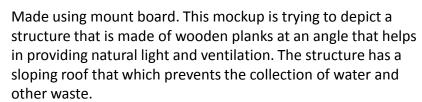


Image 41

Image 42

Image 43

Image 44

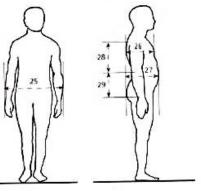
Anthropometric Considerations

Stature mean dimension taken (for male): 1650mm

4

Percentiles Max Mean R.No. Parameters 5th 25th 50th 75th 95th 57 Weight, Kg. 49.5 9.9 55.2 0.99 1939 1950 Stature 1711 Combined 0.93 Female 1215 0.93 1821 Combined 1215

Fig. 8


Fig. 9

R.No.	Parameters		Min	Percentiles					Max	Mean	+50	Ratio
			0,000,000	5th	25th	50th	75th	95th			25	
20	Mid-patella	Male	346	419	445	464	484	517	607	467	32	0.28
		Female	332	368	400	424	450	479	582	427	42	0.28
		Combined	332	410	443	461	482	516	607	464	34	0.28
21	Lateral malleolus	Male	42	49	54	57	62	70	80	59	6	0.04
		Female	41	42	50	55	61	65	79	56	7	0.04
		Combined	41	48	54	57	62	70	80	59	7	0.04
22	Medial maileolus	Male	54	62	68	73	77	85	96	74	7	0.04
		Female	47	54	64	67	72	84	91	69	8	0.05
		Combined	47	61	67	72	77	85	96	73	7	0.04
23	Span	Male	1392	1549	1634	1684	1739	1829	2040	1587	86	1.03
	-	Female	1395	1431	1485	1549	1599	1679	1750	1549	75	1.02
		Combined	1392	1479	1583	1659	1724	1809	2040	1655	102	1.02
24	Span akimbo	Male	700	774	831	859	899	959	1165	866	56	0.53
	1.0000000000000000000000000000000000000	Fernale	650	699	749	789	839	889	1199	796	64	0.52
		Combibed	650	739	809	849	889	949	1199	850	65	0.53

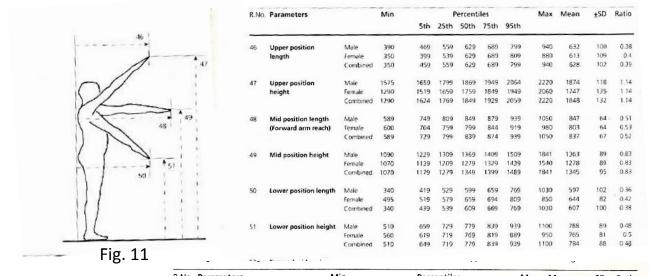
Span mean dimension taken (for male): 1687mm

Anthropometric Considerations

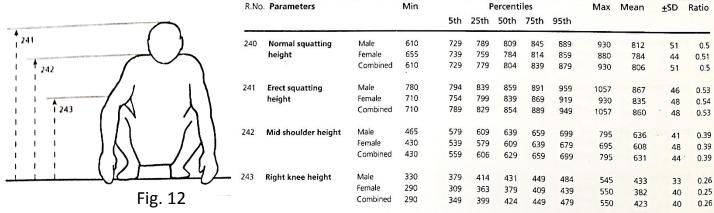
Maximum body breath(relaxed) mean dimension taken (for male): 509mm

Max Mean +SD Ratio Percentiles Min R.No. Parameters 5th 25th 50th 75th 95th 509 68 0.31 549 Male Maximum body 477 65 0.31 519 599 700 371 391 Female breadth (relaxed) 69 0.31 795 502 539 Combined 364 0.13 26 258 394 231 Male 173 Chest depth 215 43 0.14 370 237 293 159 160 Female 219 29 0.13 231 265 Combined 159 302 63 0.18 409 635 Maximum body Male 315 76 0.21 515 369 245 Female 195 205 depth (relaxed) 66 0.19 305 349 195 Comined 22 0.19 326 356 315 234 Male Acromion to 25 0.2 316 339 371 299 Female olecranon tip 395 24 324 25 0.15 Male Olecranon to 24 0.15 226

Fig. 10


R.No. Parameters Min Percentiles Max Mean ±SD Ratio 5th 25th 50th 75th 95th Vertical upward Male 1830 1929 2029 2109 2159 2259 2410 2101 1.28 arm reach, Female 1665 1759 1829 1909 1989 2079 2180 1914 102 1.26 from floor 1665 Combined 1799 1959 2059 2139 2229 2410 2050 129 1.28 Maximum vertical Male 1960 1999 2119 2189 2254 2359 2520 2188 103 1.33 arm reach, body Female 1830 1849 1959 2009 2069 2270 2189 2013 1.32 raised on toe 1830 Combined 1939 2159 2229 2339 2520 2145 126 1.33 Comfortable vertical Male 1643 2027 2146 2370 122 1.21 upward grasp Female nm reach from floor Combined

Vertical upward arm reach, from floor mean dimension taken (for male): 2101mm


Fig. 11

Anthropometric Considerations

Mid-position length mean dimension taken (for male) : 2101mm

Erect squatting height length mean dimension taken (for male): 867mm

Anthropometric Considerations

Mid-position length (Forward arm reach) mean dimension taken (for male) : 996mm

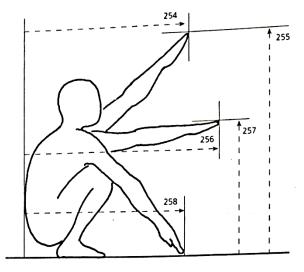
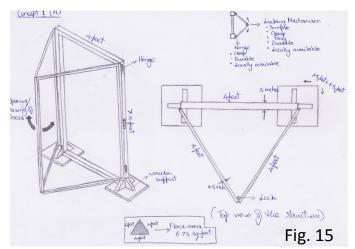
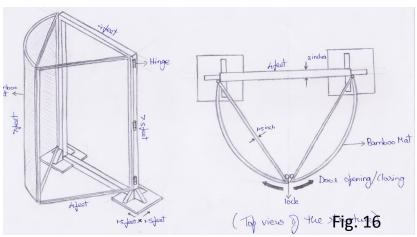
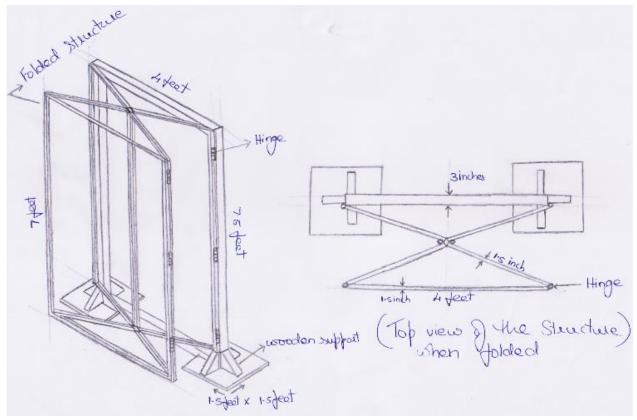
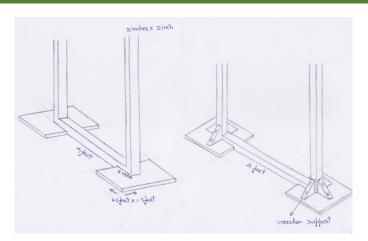
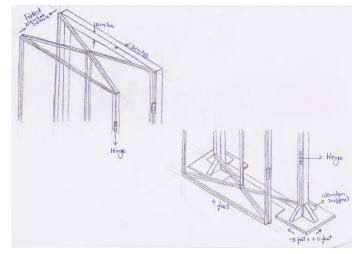




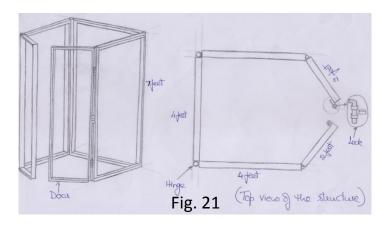
Fig. 14

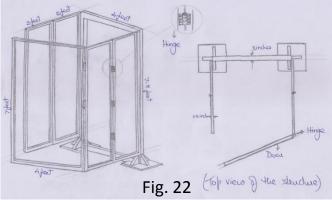
R.No.	Parameters		Min		Percentiles				Max	Mean	+SD	Ratio
				5th	25th	50th	75th	95th				
254	Upper position length	Male	470	609	749	819	889	979	1090	815	109	0.49
		Female	530	569	749	819	879	979	1030	799	121	0.52
		Combined	470	599	749	819	889	979	1090	812	112	0.5
255	Upper position height	Male	660	839	969	1069	1129	1269	1390	1057	128	0.64
		Female	530	801	949	1029	1099	1259	1270	1013	137	
		Combined	530	839	959	1059	1129	1259	1390	1047	131	0.65
	Mid position length,	Male	650	849	949 .	989	1056	1119	1320	005		
	Forward arm reach	Female	560	839	919	949	1029	1129		996	84	0.6
		Combined	560	839	929	989	1049	1119	1160	965	96	0.63
						303	1043	1119	1320	989	88	0.61
257	Mid position height	Male	360	414	509	559	589	674				
		Female	330	399	489	539	579	674	990	554	84	0.34
		Combined	330	414	499	549		679	960	546	100	0.3
					433	349	589	674	990	552	87	0.34
	Lower position length	Male	660	729	809	950		- Charles				
	(touching the floor)	Female	680	699	799	869	929	1029	1150	874	86	0.5
		Combined	660	729		889	939	979	1070	865	89	0.5
				729	809	869	929	1029	1150	872	96	0.5/


Based on the ideations done, three end to end concepts were made which included the primary features that evolved during the ideation phase, some of the features are ,stability issues, ergonomic considerations, deployability of the structure ,base stand, fixing the structure to the ground, area considerations.

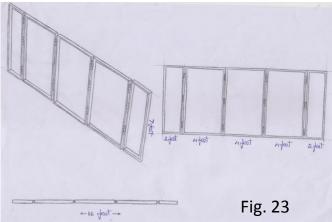


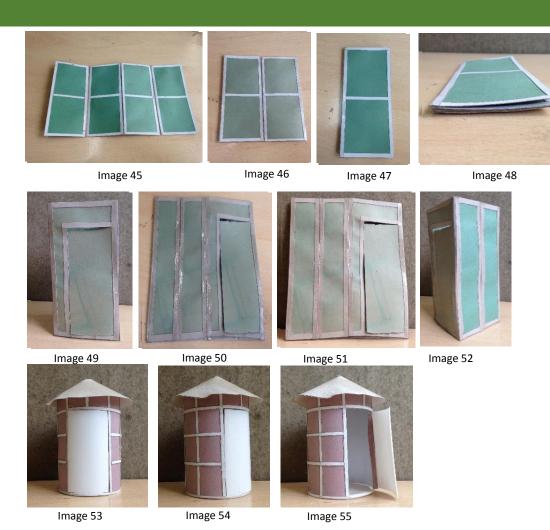



This design has a triangular frame where in ii has 1 main frame and the other 2 act as the door of the structure. It is covered with a bamboo mat in a slightly circular manner to provide more space which makes it convenient for the users to use it. The frame is made of wooden battens and is covered with bamboo mat.



This design is foldable. It has 1 main frame and 5 others out of which 4 enable it to fold and one acts as the door. The structure can be opened when in use and can be folded and kept when not in use. it saves a lot of space and makes it easy for packaging it.





This design is the least complicated. It opens up flat and takes the shape of a cuboid structure when folded. It is easy to carry and can be assembled and disassembled whenever needed. Easy to package.

Mockups (phase 2)

Made of mount board. This mock up depicts a Foldable structure that is made up of wooden frames covered with bamboo mats that takes the shape of a cuboid. This structure is easy to package as it can be folded in a door like pattern when not in use. It can be carried from one place to another and is very easy to assemble and disassemble.

Made of mount board. This mockup depicts The structure that is made of wooden frames and is covered with bamboo mats that can be opened when in use and can be folded from the center and kept when not in use. it saves a lot of space and makes it easy for packaging it.

Made of chart paper and mount board. This mockup depicts the structure that is made up of bamboo poles covered with bamboo mat. It has a sloping roof that prevents the collection of water and other waste.

Feedback on the project progress

When an evaluation check was done on the project evolution during the stage3, many conclusions were drawn which changed the path of the project significantly,

The material used for making the structure was wood and that would not have been available easily in the rural areas with such precision cuts. The whole idea of making the product extremely local and simple was getting lost.

The fixing of the structure as per my design concepts to the ground did not seem feasible. Also the grounding method was too complex and would require industrial process to be cut and fixed.

Changes in the project

- After having a discussion with my guide and other faculty members, the material of the structure was changed from wood to bamboo since I was using bamboo mats in my concepts using bamboo poles instead of wood seemed like a good idea. Also bamboo is easily available in the rural areas, is as strong as wood, provides stability, is extremely low cost, usage of bamboo will make it easy for the users to maintain and build the structure on their own without being dependent on industrial processes.
- The design element was brought in during this phase. Several mat designs were tried to enhance the richness of the structure while making it more stable. Joining details were added in a way that it contributed to the aesthetic value of the structure.

Mockups (Phase 3)

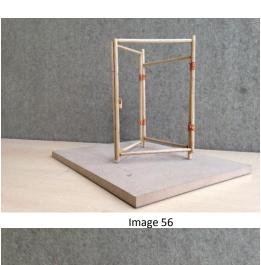


Image 57

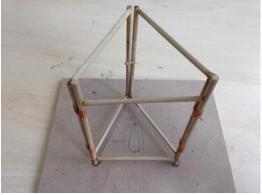


Image 58

Image 59

Image 60

Image 61

Made up of bamboo sticks. This mockup is trying to depict the triangular structure that is made up of bamboo poles hinged together using nylon rope where there is 1 fixed frame and other two frames act like the door.

Mockups

Made of bamboo sticks. This mockup depicts the joining details of two bamboo poles in the final structure made of bamboo and covered with bamboo mat. The joining detail is extremely simple and is made by alternating the nylon rope on two poles and tying it together. This enable the structure to open when in use and fold and kept when not in use.

Observation from the user study

After testing the structure layouts a thorough understanding about the product usage was obtained in terms of how the person sits and uses the structure.

Using the data from photo documentation one could map the areas where the user feels most comfortable in his/her sitting position, this came in handy during the form explorations.

The feed back given by the user during the interaction with the product structure was also immensely useful in refining the product and making it more effective.

Final exploration 1

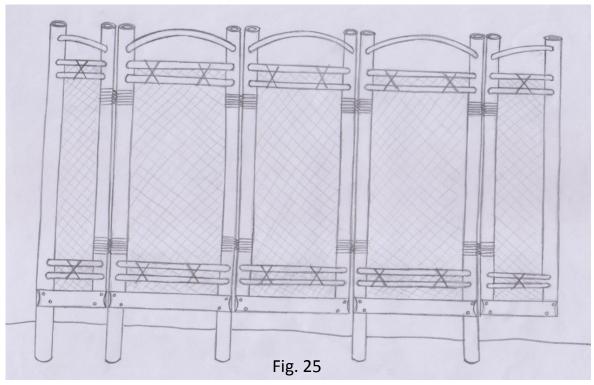
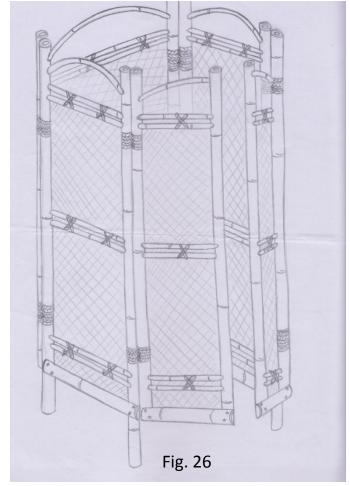



Fig. 25 is a structure design when opened completely. It has space for ventilation on the top and bottom of the structure. The structure is covered with bamboo mat and has two bamboo stick on the top and bottom for support which are tied on to the mat in a cross pattern, this joining detail help in adding a design element in the structure.

Fig. 26 is when the structure is folded and is ready to be used.

Final exploration 2

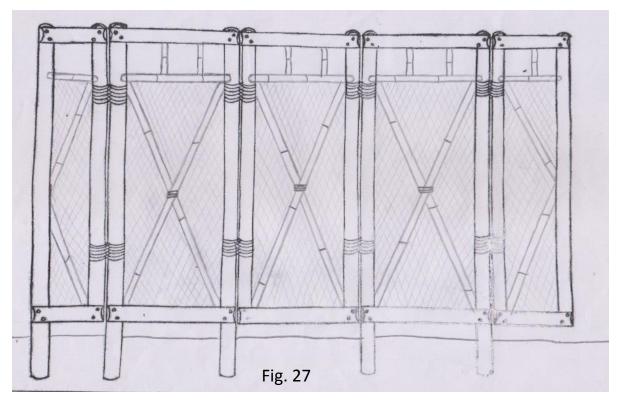
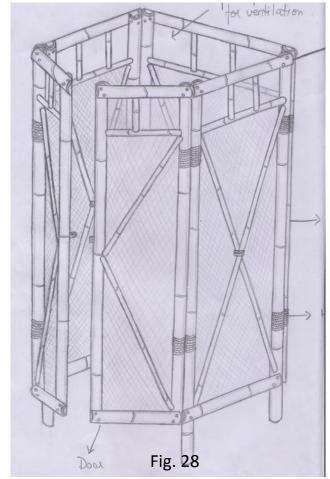



Fig. 27 is a structure design when opened completely. It has space for ventilation on the top and bottom of the structure. The structure is covered with bamboo mat and has two bamboo stick tied on to the mat in a cross pattern for support. Fig. 28 is when the structure is folded and is ready to be used.

Final exploration 3

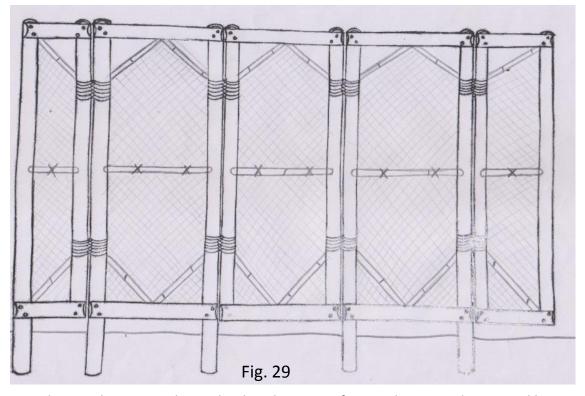
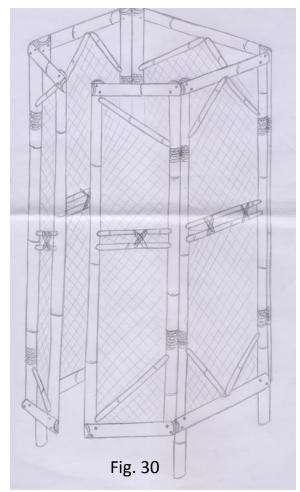



Fig. 29 is a structure design when opened completely. It has space for ventilation on the top and bottom of the structure. The structure is covered with bamboo mat and has two bamboo stick tied on to the mat on the top and bottom of the structure in a slant pattern, it also has a bamboo stick tied in the center for support. Fig. 30 is when the structure is folded and is ready to be used.

Final concept

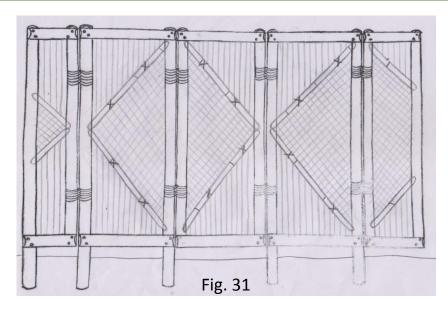
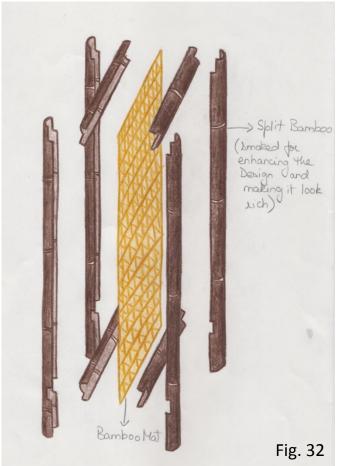
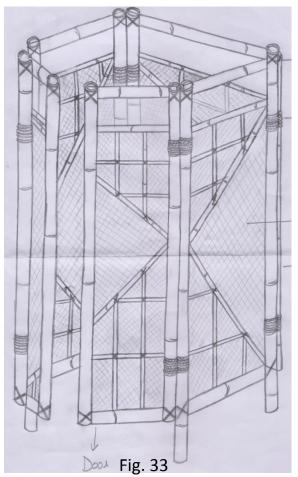




Fig. 31 is a structure design when opened completely. It has space for ventilation on the top and bottom of the structure. The structure is covered with bamboo mat and has two bamboo stick in the center in a triangular shape that highlights the mat and a criss- cross pattern on the top and bottom for support. They are tied on to the mat in a way, that it helps in adding a design element in the structure. Fig. 32 is the exploded view of the frames of the structure. Fig. 33 is when the structure is folded and is ready to be used.

Hinging details

The frames of the structure are joined together with the help of the hinging detail shown in the Fig. The hinge is tied on to the bamboo poles in an alternate pattern and is made using a nylon rope which provides flexibility, easily available and also is strong enough to carry weight. This hinging technique also enables the entire structure to fold and unfold when in use or not.

Joining details

1. Joining two bamboo poles with each other

Two poles are fixed using a right angle

Two poles are fixed using a L joint

Two poles are fixed using a cross bamboo support with the help of nuts and bolt

Two poles are tied together using cane

Two poles are fixed using bamboo nails.

Joining details

- 2. Joining the mat to the bamboo
 - By slitting the bamboo poles

Bamboo when slit

Slit bamboos joined together to make the frame

Bamboo mat attached in the slit bamboo frame

Bamboo strips are being attached to the mat to strengthen the structure which also adds to the aesthetic beauty of the structure

Tying the bamboo strips to the mat

Bamboo panel (outside view) ready to be fixed

Final refinement

Inside view of the panel

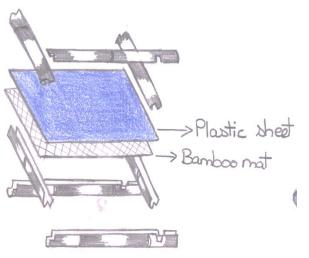
Joining details

• By splitting the bamboo poles in two halves (Final structure joining detail)

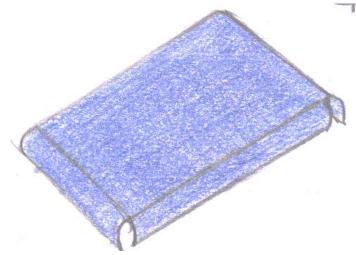
In this method bamboo poles are split in two halves then the bamboo mat and the strips are placed in the middle of the two split pieces and are tied together and fixed. This method is easy. Reduces effort and is good from the point of mass production. The joining details add to the aesthetic beauty of the entire structure

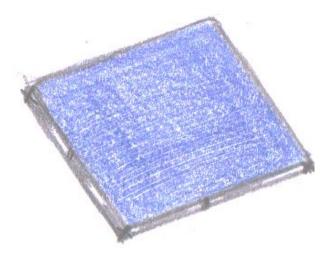
Grounding Details

The structure is going to be fixed in a jerry can or a tin box by adding mud an stones in it to make it strong and firm. This can is going to be buried under the ground to make the structure even stronger and to fix it in one place.



Roof Details


of bamboo mat and has a lining of plastic on the top portion to protect it from water in case of rain. The roof is slightly elevated from the structure to provide ventilation. The roof is sloping towards the back to prevent the collection of water and other waste material such as dried leaves. The roof is attached on the top of the structure and is tightly tied on to the structure.


Roof Details

STEP 1- The roof is made in the same manner the bamboo panels were made using split bamboo poles. The mat and the plastic sheet are sandwiched between the split poles.

is sandwiched from the outer portion covering the bamboo pole to protect the poles from getting spoiled by rain water.

step 3- after the mat and the plastic sheet are sandwiched between the bamboo poles they are tied together tightly using a wire.

The roof is now ready to be attached to the structure and be used.

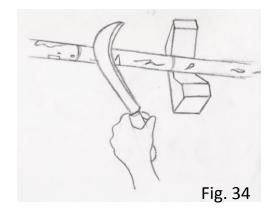
Water consideration

Options to protect the bamboo from water.

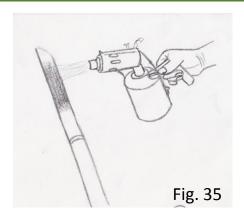
http://www.plasticpack.lt/en/packaging-textile-industry

1) Plastic sheet lining can be put on the inside part of the mat to protect it from the water. Plastic sheet can be sandwiched along with the mat while making the individual frames. Plastic sheets are easily available, easy to use, low cost and have a good life span.

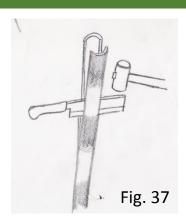
http://www.rongaliinternational.in/products.html

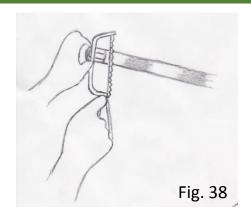

2) Mixture of cow dung and mud coat can be applied on the structure in order to prevent the structure from getting spoiled with the frequent usage of water. This is the most commonly used method in villages. People put a coat of cow dung and mud mixture on their houses that are made of bamboo to increase its life span. This is an extremely low cost method and can be done easily.

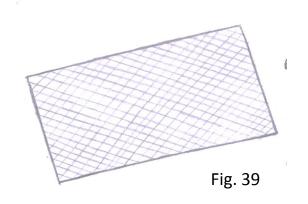
3) Glass composite skin can be applied on to the structure. It makes the structure water proof and strong. It increases the life span of the bamboo. But its an industrial product and won't be easily available in the villages. Also glass composite skin is expensive, hence it is not a suitable material for the village scenario.

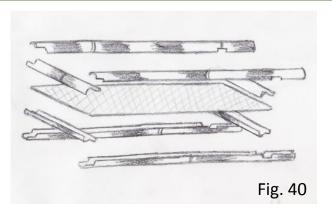

http://www.cleantech.org/magazine/month201108

step 1- bamboo poles and mat are purchased. There were a few limitations in selecting the bamboo poles- only straight bamboo poles were picked to meet the need of the design, cost of the pole should be low, the pole should be strong enough to provide stability to the structure.

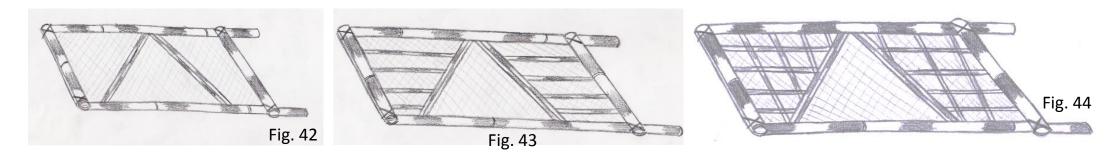

step 2- Not all bamboo poles are clean so after selecting and purchasing the poles they are cleaned using a sickle. The poles are kept on a v support so that it can be cleaned properly.


STEP 3- After cleaning the bamboo the pole is burnt using a blow torch. It is burnt to give the poles a texture that helps in enhancing its aesthetic value.


step 4- After the bamboo is given the burnt texture, the skin of the bamboo is peeled to give the poles a smooth finish and also to enhance the burnt effect.


STEP 5- The pole is split into two halves so that the mat can be fixed.

step 6- After splitting the bamboo poles the top of each pole is flattened to make it easy to join to poles together.


STEP 7- Ready made bamboo mat of 4*6 feet is used.

STEP 8- The mat is sandwiched between the split poles.

STEP 9- The mat is properly sandwiched and fixed properly between the poles by tying it using a wire.

STEP 10- After the mat is fixed, bamboo strips are attached to give the structure more strength and stability. They are attached between the split poles after the frame is made. They are attached in away that is adds to the richness of the structure.

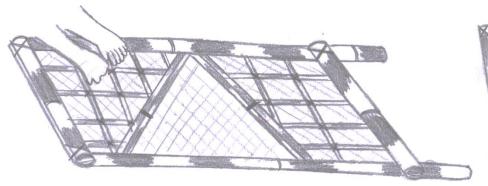
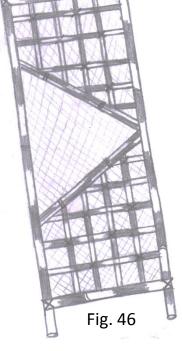
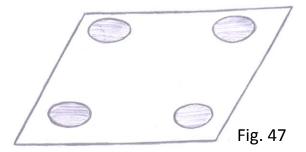
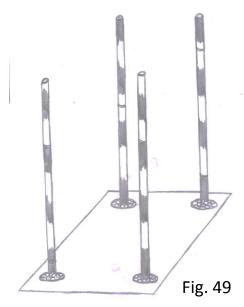
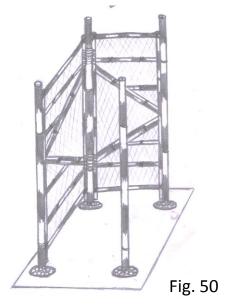
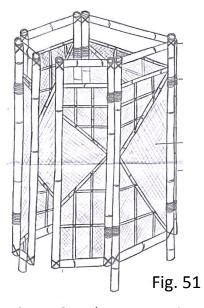




Fig. 45

STEP 11- The strips are fixed onto the mat by tying them up using wire. The joints are checked properly before the frame is ready to be used. All the strips are joined on to the mat in pattern that helps in enhancing the design value of the frame.


STEP 13- The frame is now ready to be used.

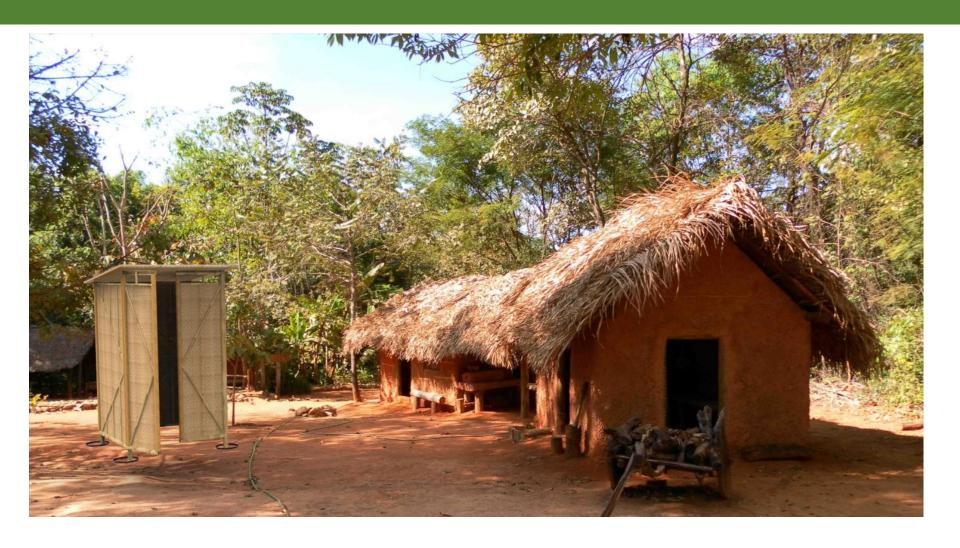

STEP 14 – After the frame is ready 4 pits are dug into the ground.


STEP 15 – After the 4 pits are dug into the ground cans or small buckets or pots are placed in the 4 pits for the stability of the structure. A small part of the pot is kept above the ground so that it becomes easy to replace the poles when needed and also to tie them up with plastic covers to protect is from water.

STEP 16 – After the 4 pits are dug into the ground, 4 bamboo poles are buried into them.

STEP 17 – After the 4 bamboo pole are buried into the pit, the frames are attached by hinging them to the main poles.

STEP 18 – The structure is full assembled and now ready to be used.


STEP 19– Final structure.

CAD Modelling



Naman Varma l Industrial Design

Structure in the rural scenario

Structure in the rural scenario

Modularity in Structure Design

Modularity is the degree to which a system's components may be separated and recombined. In the structure designed by me modularity in design is possible. Individual frames will sold so the user can buy as many frames he wants as per his need and requirement. E.g.. A combination of bathroom and toilet can be constructed using 7 frames or a no. of toilets can be constructed side by side in case of common usage by the community.

Stacking and Selling Possibilities of Frames

Since the frames are going to sold individually they can be stacked and kept. They can be sold individually and the user can purchase as many frames he wants as per his need and requirement. These frames can be sold in the hardware stores, in the local kirana store or in the weekly bazar which happens every week and is a common concept in most villages. One day in a week a market is set in the village so that the villagers buy things that they need from there. E.g. food, clothes, utensils, baskets, footwear, toys, women accessories etc. All the above are the possibilities where the bamboo frames can be sold.

Cost estimation for Prototype

Material	Quantity	Cost (Rs)
Bamboo pole (18')	5	150
Nylon Rope (20')	1	100
GI wire	½ Kg	200
Bamboo mat (4' * 6')	4	280
Steel angles	32	128
Nut bolts	1Kg	80
Kerosene	5 lit	250
Transportation	-	500
Labor cost	-	4000
10 % Overhead cost (Elec. ,Tool, etc.)	-	568
Total		6236

Estimated price of prototype is **6236** /- (including 10% overhead costs)

Cost estimation for one single panel (Mass-Production)

Material	Quantity	Cost (Rs)
Bamboo pole (18')	2	50
Nylon Rope (5')	1	10
GI wire (1/4 Kg)	1	20
Bamboo mat (4' * 6')	1	70
Labor cost (for 2 Labors)		500
Total		650

Estimated price of per Panel is Rs.650/- only (including labor cost)

Estimated price of Single structure Rs.650*4 = 2600/- only (including labor cost)

Conclusion

The project followed a formal design methodology and proposed a design intervention in a challenging area of providing a Low-cost sanitation structure in the rural areas of India.

Even though many of the preliminary concepts failed, it was possible to refine and look for directions that took the final concept to a substantial level of feasibility. Validation by making the concept work in real life scenario would be the formal way of culminating the project.

Prototype will be presented in the jury.

References

Web References:

- http://www.theguardian.com/global-development/poverty-matters/2014/nov/19/snakebites-diarrhoea-violence-india-rural-women-toilets
- http://scroll.in/article/666396/Toilets-are-urgently-needed-in-rural-India,-but-don't-imagine-they'll-reduce-rape as seen on 12/12/14

Image References:

- http://3.imimg.com/data3/YG/KY/MY-4735195285/bmb-500x500.jpg as seen on 1/1/15: Image1
- http://www.remodelista.com/files/styles/733 Os/public/img/sub/uimg/01-2012/canvas-drop-cloth.png as seen on 1/1/15: Image 2
- http://www.campist.com/archives/vango-milano-2-camping-tent.jpg as seen on 1/1/15: Image 3
- http://www.finixia.com/commerce/wp-content/uploads/2014/02/PLYWOOD MARINE.jpgas seen on 13/1/15: Image 4
- http://www.rolextimber.com/index h
- http://www.in.all.biz/img/in/catalog/267765.jpeg as seen on 11/1/15: Image 6
- http://static6.depositphotos.com/1000681/607/i/950/depositphotos 6071168-old-red-brick-wall-background.jpg as seen on 26/1/15: Image 7
- https://www.arborday.org/trees/privacyhedge/graphics/photos/1.jpg as seen on 22/1/15: Image 8
- http://farm4.staticflickr.com/3247/2730779169 d5887e3c88 m.jpg as seen on 13/2/15: Image 9
- http://toiletsoftheworldbook.com/wp-content/uploads/2009/08/201 IND tent.jpg as seen on 12/1/15: Image 10
- ttp://listdose.com/10-things-that-are-stopping-india-from-development/: Image 14
- http://www.ruralhousingnetwork.in/technical/eco-san-toilets-for-individual-households/Introduction: Image 15
- http://www.elamjung.com/local_view.php?id=1298 : Image 16

References

- https://www.hands4africa.org/Sanitation/toilets.html : Image 17
- http://srffoundation.wordpress.com/tag/toilets/ : Image 18
- http://farm4.staticflickr.com/3247/2730779169_d5887e3c88_m.jpg: Image 19
- http://toiletsoftheworldbook.com/wp-content/uploads/2009/08/201 IND tent.jpg: Image20
- http://www.aljazeera.com/mritems/Images/2013/10/25/20131025151112470580 20.jpg : Image 21
- http://www.bloomberg.com/bw/articles/2013-09-09/in-india-a-toilet-shortage-drains-the-economy Image 22
- http://media.newindianexpress.com/article589265.ece/alternates/w620/bio-toilets-PTI.jpg Image 23
- http://geekologie.com/2013/05/03/urine-hay-compost.jpg: Image 24
- http://www.campist.com/archives/stinky-pete-shower-toilet-tent.jpg: Image 25

Book Reference:

- Indian Anthropometric dimensions, Author: Debkumar Chakrabarti, 2011
- The bamboo fences of Japan, Author: Shigenori Tanaka, 1983