WORKBOOK TO DEVELOP VISUALIZATION

A special project report

by

B. K. Chakravarthy

guide

Prof. U. A. Athavankar

Industrial Design Center

Indian Institute Of Technology

Powai Bombay 400 076

March 1988

बी, ब. केन्द्र पुस्तकास्य I. D. C. LIBRARY.

WORKBOOK TO DEVELOP VISUALIZATION

A special project report

by

B. K. Chakravarthy

जी, ज. केन्द्र पुस्तकास्त्र I. D. C. LIBRARY

guide

Prof. U. A. Athavankar

Industrial Design Center
Indian Institute Of Technology
Powai Bombay 400 076
March 1988

APPROVAL SHEET

The special project titled "WORKBOOK TO DEVELOP VISUALIZATION" by B. K. Chakravarthy is approved in partial fulfilment of the requirement for M.Des degree in Industrial design.

Signature MAHAM Date

Guide:

ACKNOWLEDGEMENT

I, sincerely thank prof U. A. Athavankar for his valuable guidance and encouragement throughout this project

I, also, sincerely thank all concerned faculty, staff and my fellow class mates for their kind help extended for this project

B.K.CHAKRAVARTHY

CONTENTS

- 1. INTRODUCTION
- 2. METHODOLOGY
- 3. BIBLIOGRAPHY
- 4. ANNEXURE

Roger N. Shepard, Professor of Psychology at stanford University, recently described his personal mode of creative thought during which research ideas emerged in his mind as unverbalized, essentially complete, long-sought solutions to problems.

"That in all of these sudden illuminations my ideas took shape in a primarily visual-spatial form without, so far as I can introspect, any verbal intervention is in accordance with what has always been my preferred mode of thinkingMany of my happiest hours have since childhood been spent absored in drawing, in tinkering, or in exercises of purely mental visualization."

-- Roger N. Shepared
Visual learning ,thinking,and
communication

INTRODUCTION

INTRODUCTION

Although visual abilities are not democratically endowed, differences in inherited aptitude do not afford a rationale to deny visual education. What ever the inheritance, the unrealized potential for visual development is great. Even the visually apt have room for improvement; writes psychologist MacFarlane Smith, "Our current system of education actively discriminates against the student who is competant in spatial ability." Given a one sided education in the 3R's (Arithmetic, Reading & Writing), most people possess a large unrealized potential for visualization. Almost everyone can learn to see more fully, to imagine more productively, and to express their visual ideas by drawing.

Visualization pervades all human activity, from abstract

to theoretical to the down-to-earth and every day. An astronomer ponders over a mysterious cosmic event, a foot ball coach considers a new strategy; a motorist maneuvers his car along a unfamiliar pathway: all are thinking visually. You are in the midst of a dream; you are making order out of disarry on your desk: you are thinking visually. Surgeons think visually to perform an operation chemists to construct molecular models; engineers to design circuits, structures, and mechanisims; businessmen to organize and shedule work; architects to coordinate function with beauty; carpenters and mechanics to translate plans in to things.

Now let us see what the dictionary meaning for visualize is, it says "To make perceptible to the mind or imagination, To form a mental image of , To call up or form mental images. Visual thinking is made up of a series of visualizations which in turn result due to a lot of mental operations.

The upmost advantage of visual thinking is that while we are hearing, smelling, or touching, we are also seeing; and the brain which constantly seeks to simplify information for us, sets up visual clues along with other clues, enabling us to substitute vison for our other senses. The most important function for the brain is to sort or identify quickly our experiences using the most efficient sensory mechanism. Consider this example "Look at the picture of the large, sclptural water fountain in the middle of the park". The reflections of the water as it spills and sprays over the edge of the fountain is our visual picture but at the same time, we experience damp coolness and the pattern of the falling drops. Even if this fountain is only a small part of this picture, our eyes are invariably drawn towards it because it is visually symbolic of all the sensual plesures. Therefore, visual images are power full by the way they represent experiences using the other senses.

"A monk asked his teacher, What is myself?' The teacher answered, There is something deeply hidden with in your self, and you must become acquainted with its hidden activity. The monk then asked to be told what this hidden activity was. The teacher just opened and closed his eyes

---- Frederick Franck
The zen of seeeing

"To be shaken out of the ruts of ordinary preception, to be shown for a few timeless hours the outer and inner world, not as they are apprehended, directly and unconditionally, by Mind at Large -- this is an experience of inestimable value to everyone."

-- Aldous Huxely

The Doors of preception

METHODOLOGY

METHODOLOGOY

The workbook's main aim is not to test but to develop the ability of visualization.

The excercises were developed considering the basic mental operations of visualization-that is some of the active ways that visual images are formed and manipulated spatially. Psychologists who study and test mental ability have discovered that visual thinking involves a number of visual-spatial operations. L.L. Thurstone ,'a pionner in the development of Psychological tests, writes:"As a result of factorial studies during the last two decades, we no longer speak of visualizing as a single trait. We know some seven or eight primary factors that are quite distinct and which are all related to visual thinking."

To understand how good a person was in understanding the third dimention and visualizing the tool used was games. These games which were essentially building blocks type would always activate the right hemisphere of the brain. The right hemisphere of the brain does the work of visual spatial relationships. The games used were

- 1. Superfection: In this game there are a number of negative and positive pieces, out of the lot a positive and negitive piece has to be selected such that it forms a cuboid.
- 2. Tangram:In this game there are seven pieces using which different shapes have to be made
- 3.Metal ring puzzels: In this game there are inter locked metal rings which have to be separated out
- 4.Game maker:In this game there are fifteen pieces with regular shapes. After selecting one piece the other pieces have to be arrenged in such a way that they form triple the size of the selected piece

These games were given to a variety of people all graduates. The problems they faced the way of tackling, the approch etc while playing were observed. After this by brain storming exercises were created , these exercise were seperated out in to different kinds . The groupes were further polished by referring to the book "EXPERIENCES IN VISUAL THINKING" by Mackim

The five kinds of exercises developed take the subject gradually from manipulating in two dimentions to manipulating in three dimentions.

This approach was taken because everybody is confident with two dimentional things on two dimentional surfaces but the problem comes when we have to dipict three dimentional things on two dimentional surfaces

The four kinds of exercises are:

1. TWO DIMENTIONAL MANIPULATION:

It involves mainly rotations, pattern seeking, matching etc.

2. ORTHOGRAPHIC IMAGINATION

It involves the building up of three dimentional objects from orthographic views.

- 3. PERCEPTION OF NEGATIVE SPACES
 It involves the matching of spatial relationships.
- 4. THREE DIMENTIONAL MOTION
 Imagery in three dimentional motion is very important for visualizing.

BIBLIOGRAPHY

EXPERIENCES IN VISUAL THINKING ROBERT.H.McKIM
STANFORD UNIVESITY

DRAWING ON THE RIGHT SIDE OF THE BRAIN BETTY EDWARDS
FONTANA / COLLINS

FIGURES FOR FUN
YA. PERELMAN
MIR PUBLISHERS

SCIENTIFIC AMERICAN VOL 251 P 50971 DEC 1981

WORKBOOK TO DEVELOP VISUALIZATION

A special project report

by

B. K. Chakravarthy

guide

Prof. U. A. Athavankar

Industrial Design Center

Indian Institute Of Technology

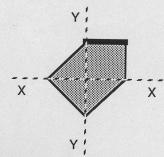
Powai Bombay 400 076

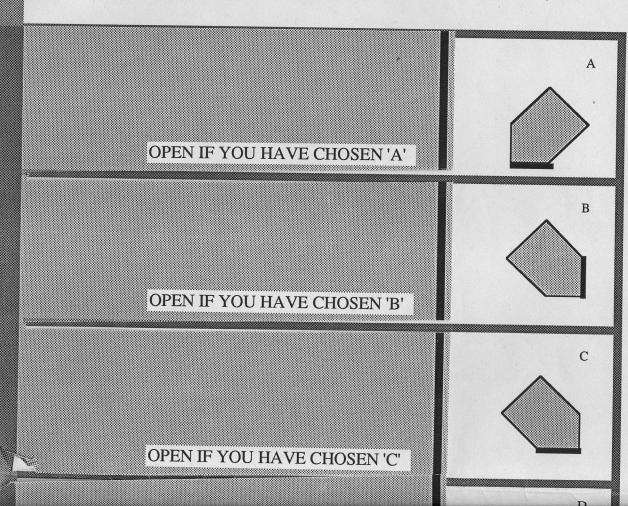
March 1988

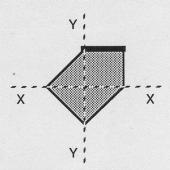
जी. ज. केन्द्र पुस्तकाजय I. D. C. LIBRARY

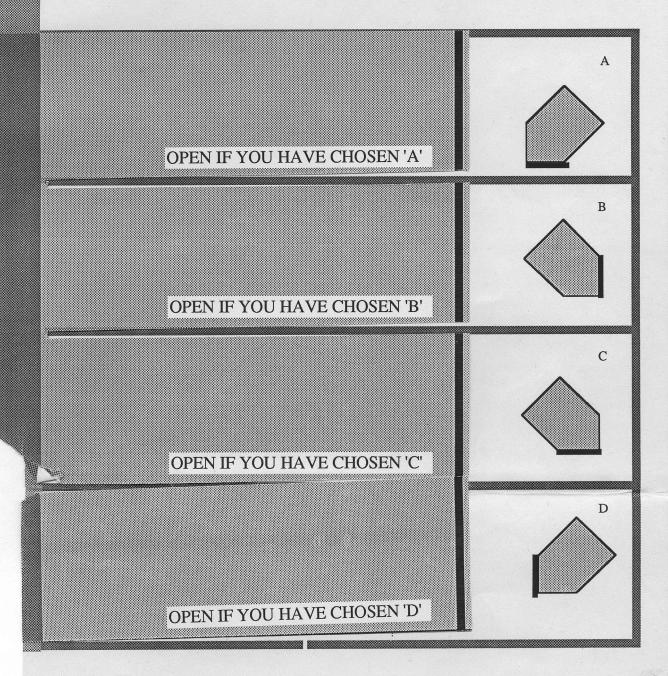
WORK BOOK TO DEVELOP THE ABILITIES OF

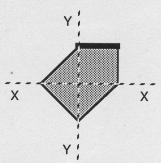
VISUALIZATION

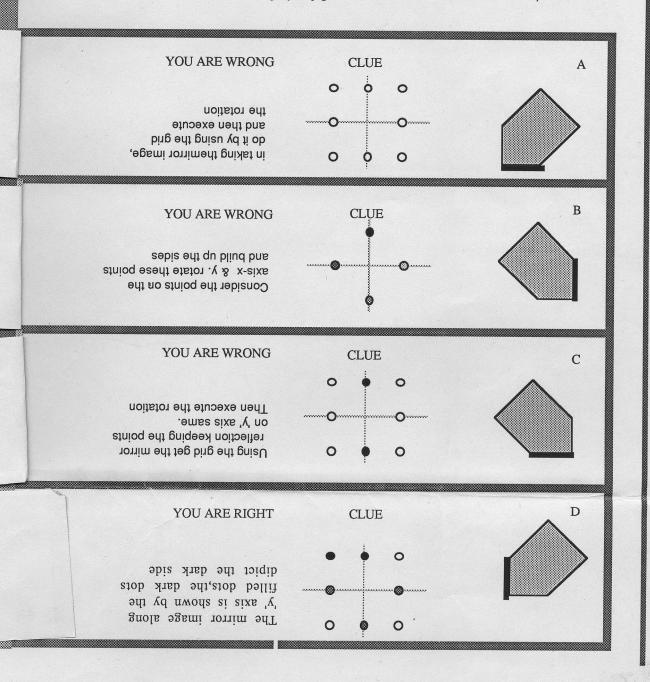

By B. K. Chakra varthy (Spl. Brojeet Repost)

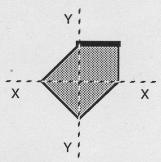

जी, ज. केन्द्र पुस्तकाल म L. D. G. LIBRARY

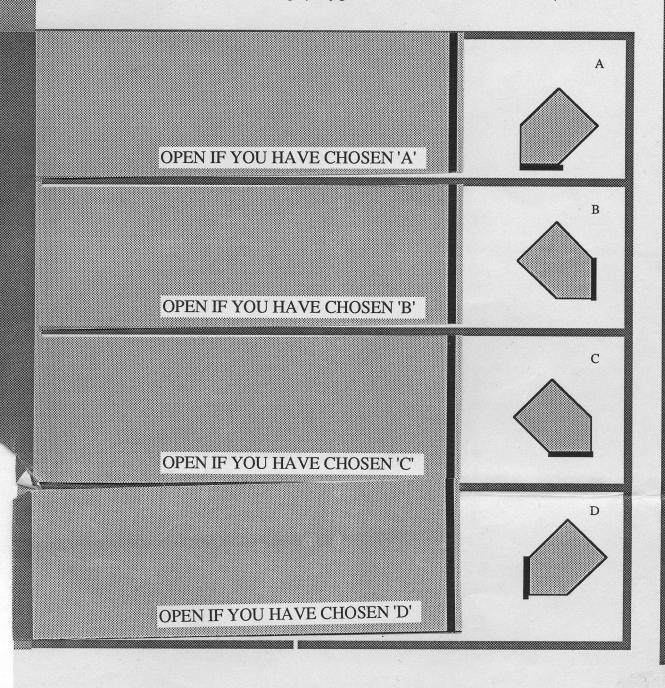

THE KINDS OF EXERCISES

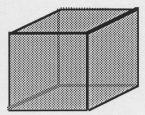

- 1.TWO DIMENTIONAL MANIPULATION
- 2.ORTHOGRAPHIC IMAGINATION
- 3.NEGATIVE SPACE PERCEPTION
- 4. THREE DIMENTIONAL MOTION

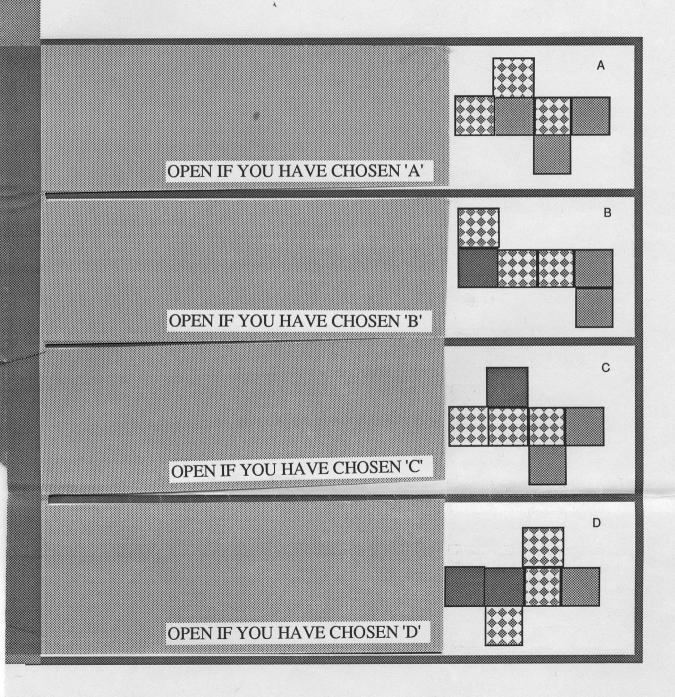

1.TWO DIMENTIONAL MANIPULATION Here a single sample exercise is given. Further exercises can be developed by increasing the complexity gradually







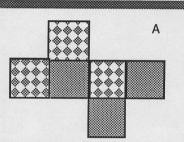




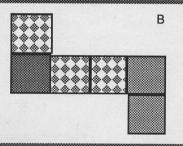
2.ORTHOGRAPHIC IMAGINATION

In this kind three sample exercises are given. The exercises show the levels of complexity.

Consider the cube shown in figure it is such that three sides of the cube around a vertex have same shading so there are two types of shadings From the alternatives find the correct undeveloped surface

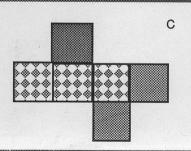


Consider the cube shown in figure it is such that three sides of the cube around a vertex have same shading so there are two types of shadings From the alternatives find the correct undeveloped surface

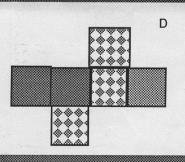


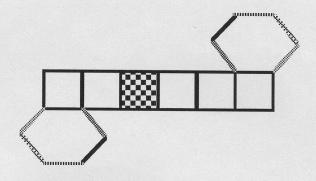
YOU ARE WRONG

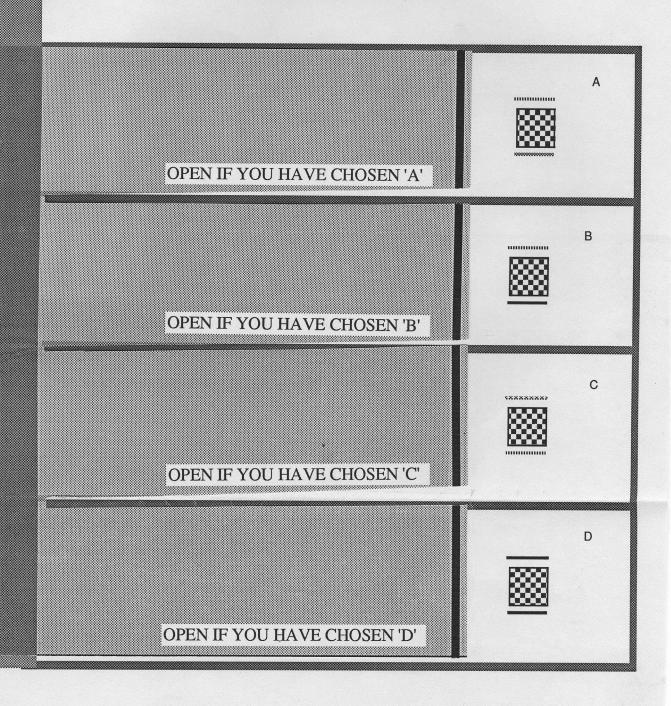
TRY TO VISUALIZE A EMPTY CUBICAL BOX WITH THE REQUIRED SHADINGS INSIDE THE BOX. THEN OPEN IT

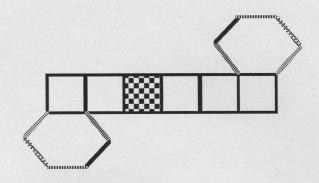


YOU ARE CORRECT


YOU ARE WRONG


CONSIDER ONLY ONE SHADE
THEN TRY TO FIND OUT
IF THE SIDES DEVELOP
TO HAVE A COMMON VERTEX


YOU ARE WRONG


IF THE 3 SHADED SIDES ARE IN A ROW THEN THEY CANNOT SHARE A VERTEX

The development of a hexagonal prism is shown in the figure The sides of the top and bottom hexagon are marked. Find out which sides of the top and bottom hexagon does the shaded square match with on development

The development of a hexagonal prism is shown in the figure The sides of the top and bottom hexagon are marked. Find out which sides of the top and bottom hexagon does the shaded square match with on development

YOUR ANSWER IS WRONG

A

Try to visualize a simple development such as that for a cube. Take notice of the vertice points and solve the problem

YOUR ANSWER IS RIGHT

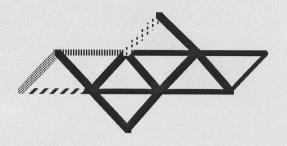
В

The development becomes very easy when you consider the shaded side as your front side and start

YOUR ANSWER IS WRONG

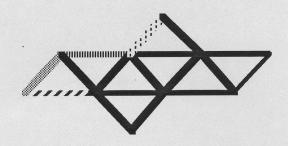
_

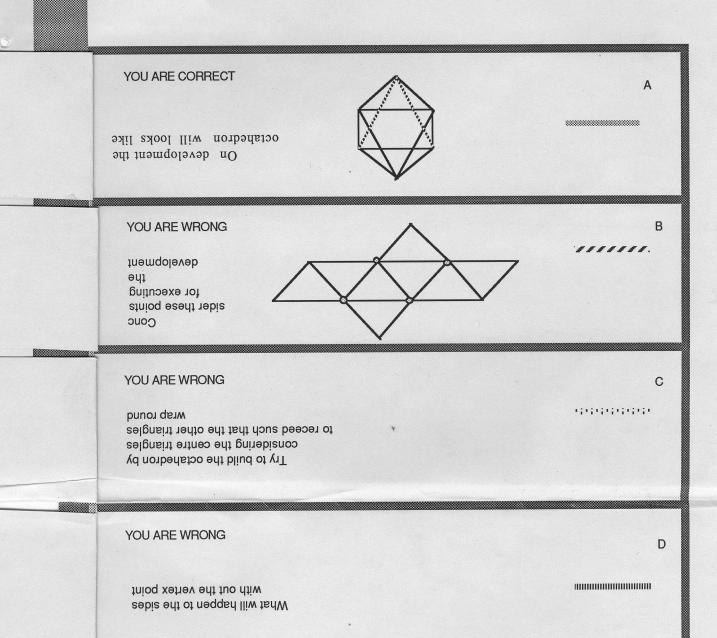
Take the bottom hexagon and then start the development.

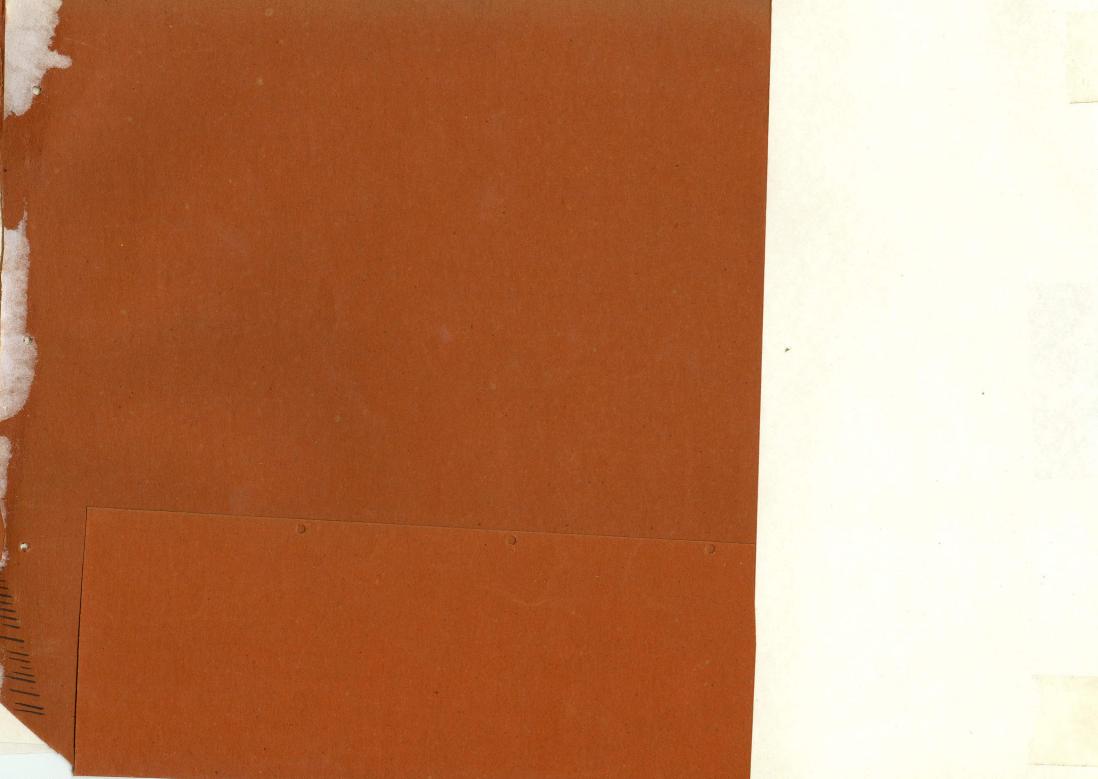


D

YOUR ANSWER IS WRONG


Try to roll the hexagons on the sides what do you achieve




The above figure shows the eight sides of a octahedron. Find out from the alternatives which of the shaded sides does the thin side meet.

OPEN IF YOU HAVE CHOSEN 'A'	A
OPEN IF YOU HAVE CHOSEN 'B'	В
OPEN IF YOU HAVE CHOSEN 'C'	C
OPEN IF YOU HAVE CHOSEN 'D'	D

The above figure shows the eight sides of a octahedron. Find out from the alternatives which of the shaded sides does the thin side meet.

