Project 3: Report

Managing Smartphone Interruptions
through a Smart Notification System

Vivek Paul Joseph
156330004
Interaction Design
M.Des (2015-17)

Guide: Prof. Jayesh Pillai

IDC School of Design
Indian Institute of Technology Bombay



Aknowledgements

[ would like to thank Prof. Jayesh Pillai for his support and guidance through the
duration of this project. | am grateful to Priof. Anirudha Joshi, Prof. Girish Dalvi,
Prof. Ravi Poovaiah and Prof. Venkatesh Rajamanickam at IDC for their valuable
feedback and suggestions.

iii



Table of Contents

Abstract

1. Introduction

2. Research Problem

2.1 Opportunity for Design Intervention
2.2 Approach

2.3 Deliverables

3. Secondary Research

3.1 Existing Research on User Interaction with Notifications

3.2 Existing Research on Interruption Management for

Smartphones

4. Primary Research

4.1 Preliminary Interviews

4.2 User Phone Data Collection

4.3 Design Implications

5. System Design and Ideation

5.1 User Interactions - User Response
5.2 Presentation of Filtered Notifications
5.3 Finer Controls : Manual Grouping

5.4 Feedback to Users

09
11
13
13
13
14
15

16

17
17
17
22
25
25
31
32
32

5.5 Reminders/ Tips
6. Prototyping

6.1 Ul

6.2 System Prototype
7.Evaluation

8. Future Scope

9. Conclusion

References

33
35
57
39
43
47
49
51



1. Introduction

Notifications could be a major source of disruptions in
smartphone users’ activities. While some of these notifications are
important and useful, others are either unimportant or not urgent.
These notifications can potentially break the flow of the activity that
the user was engaged in. For certain activities and for certain users, it
may not be of much consequence. But in some cases, the time taken
back to regain the focus in the activity may be longer; and hence could
affect their overall productivity. And especially in a case where the
notification was regarding something unimportant, the cost (break in
flow) does notjustify the benefit (theinformationfromthe notification).
While the user can simply switch off the phone, it may not necessarily
be the best solution since they may miss an important call or message.
Another option would be to mute notifications from specific apps for
a certain duration. But such control requires the user to take time to
set them up. Such a solution requires active control from the user.
This could work for some users, but not all. Currently the android 0OS
(5.0 and up) and certain apps allow muting notifications from specific
apps. But that may not be the ideal solution since the user may not
want only certain notifications from the app (for example: Muting the
messaging app to get rid of advertisement messages would also block
important messages from people or banks).

While there are lots of things for people to get distracted by,
smartphone notifications are one of them; and controlling the
unwanted notifications would make it one less source of distraction.
One possible method to achieve this could be using a notification
control system that learns user preferences based on their usage
patterns and automatically prioritises these interruptions, sorts them
and presents the user with only the important ones. Thiswould require
only minimum active control from the user and hence would work for
awider range of users (compared to solutions requiring active control)
and still provide a personalised experience to the user. This project is
an attempt to develop the framework for such a system.



2. Research Problem

Notifications popping up on smartphones while user is
engaged in some activity could potentially cause a temporary
disruption in their flow. Some of these notifications (for example,
advertisements, unimportant mails, etc.) are not urgent and/or don’t
require immediate attention. In such cases, the interruption is not
worth the user’s time or disruption in their work flow.

2.1 Opportunity for Design Intervention

A personalised notification system that prioritises the notifications
based on the user’s behaviour (and interrupt the user only when
necessary) could reduce the number of unwanted disruptions and
provide the user a relatively continuous work flow. Such a system
would interrupt the user only when it is important to the user.

This system would need interactions for the user to communicate
the receptiveness towards a notification. The presentation of the
notifications based on their priority could also be explored to provide
the user a better experience with their smartphones.

2.2 Approach

Broadly, the approach can be splitto:
1. User Behaviour Study
2. Development of a Notification Prioritisation System
3. Evaluation of System Performance

2.2.1 User Behaviour Study:

This stage covers the secondary and primary research. Secondary
research being the existing research material; and primary research
being done through interviews and data collection. For the data
collection part, a monitoring app was developed and installed in the
users’ smartphones. This app monitored a wide range of variables on
the user’s phone and logged them.

2.2.2 Development of a Notification Prioritisation System:

The insights and consequent design implications that were drawn
from the secondary and primary research were used to develop the Ul
and UX elements of the system.

Thedatacollected foreachuserwere,thenanalysedtoidentify patterns
that the prioritisation system can be built upon. This step involved
studying the collected data to determine the potential factors that
can be used as indicators towards the priority that needs to be setto a
particular type of notification. Machine Learning algorithms is one of
the methods that was explored for the analysis of the collected data.



Each user’s data was analysed separately in order to get personalised
patterns. This stage would also involve the design of the Ul and UX
elements of the aforementioned system, where different methods of
representation of the notifications were explored to come up with one
that works for this system.

2.2.3 Deployment/Evaluation of System Performance

While ideally this system should be part of the smartphone OS
itself, for the scope of this project, an application can be developed
incorporating the findings from the previous step. This application
would simulate how to:

« manage which notifications get shown to the user;

« inwhat way it will be presented to the user; and

+ how the user would interact with the notifications.

2.3 Deliverables

A framework for a notification prioritization system that could
demonstrate the concept pitched in the project. This would include:

+ Identified factors that could potentially affect the user’s behaviour
towards a notification

« Aprioritization algorithm based on the identified factors

« Asemi-functioning prototype

Since Android doesn’t support adding of new interactions to the
notification bar, the Ul and the functioning of the system have to be
prototyped separately. This would act as a proof of concept of the
system. The prototype would have two parts:

« A framework which collects user’s notification data, trains an
algorithm with the data and can identify low-priority notifications

+ AUl prototype that demonstrates the working of the interactions



3. Secondary Research

In this section, existing research material on the relationship
between users and notifications are discussed. The aim here was
to look for what the users wanted from the notifications and what
bothered them on the qualitative front; and what kind of notifications
they got, how they responded to the notifications and other related
factors of interest on the quantitative front. Research papers on how
to recognize disruptive notifications were also studied for methods
that could be used to identify and manage such interruptions.

This stage included the study of online material on machine learning
algorithms, their use, applicability and limitations with respect to

developing algorithms that could identify disruptive notifications.

Android OS ecosystem was also studied in order to ensure that the
design choices that get made fit within the ecosystem.

In the subsections, the takeaways and points of interest that are
applicable to the project are discussed.

3.1 Existing Research on User Interaction with
Notifications

An ethnographic study on ‘Mobile Notifications and attention
management’ by a team from Google [1] indicated that some users

were attached to their phones out of fear of missing something
important. They found that even the participants who blocked out
all notifications were still frequently checking their phones manually.
They also identified messages (from people) and task notifications as
the ones that were considered important by most participants.

Anotherin-situ study by M. Pielot et. al [2] that involved 15 participants,
found an average of 63.5 notifications per user per day. Most of these
notifications were from messengers and emails. This study included
a quantitative and subjective study of the notifications that the users
received and how quickly they responded to them. They found that
the participants reported increasingly negative emotions with the
increase in number of email and social network notifications received
overthecourseoftheday. Thestudyindicated thatthefastestattended
notifications were those generated by messengers and social network
applications. An interesting finding from this study was that there
was no evidence of slower response to notifications when the phone
was on silent mode. This would indicate that the users are almost as
likely to get interrupted with their phone in silent mode as they would
be otherwise. While some users took the explicit decision to delay
responding to certain notifications (eg: messenger notifications),
there was always an underlying social pressure to respond asap.



3.2 Existing Research on Interruption Management for
Smartphones

Previous research in the area of smartphone based interruption
management have relied on the use of machine learning (ML)
algorithms to predict whether a given interruption is relevant to the
user or not [3,4,5,6].

InterruptMe[6] focuses on the interruptibility of the user to predict
opportune moments for sending notifications. The main goal of this
experiment was to identify appropriate moments to interrupt the user.
Their experiment consisted of an app that is installed on the users’
phones that would generate notifications periodically. The user, then,
would respond to their interruptibility through explicit input methods
(Fig. 1). This data, (along with the metadata for each notification) was
used to train an interruptibility model that is personalized to the user.
While such a model would be very useful in minimizing interruptions
and for better overall user experience, such an approach would work
only in an experimental setting, since most users would not want to
spend time and effort training the system.

J Smith et. al [4] explores different machine learning algorithms
to identify disruptive phone calls. Here, the data collection to fuel
the ground truth data was done through an app which tracks the
response of the user to a particular call, i.e., whether the user answers,
declines or puts it on silent mode. This approach for collecting the
user response would work specifically only for calls since the user
HAS to respond to the call. The same is not the case with notifications,

where the user responses can’t be directly correlated to the relevance
of the notification.

The primary research in case of InterruptMe system consisted of
periodically collecting explicit input on their interruptibility from
the user using a likert scale; and using this dataset to train the ML
algorithm to predict opportune moments in the future.

Fig. 1: InterruptMe[2] interface

Other similar projects like RingLearn system[7] and In-Context system
[8] learn when to silence phone call notifications based on different
variables. But while phone calls are a source of interruptions that a
smartphone affords, it is not the only one. Notifications are a major
source of interruptions.



4. Primary Research

The primary research consisted of mainly two steps:
1. Preliminary interviews with smartphone users

2. Collection of user behaviour factors and preferences; and factors
that can be used to determine patterns that can be used to predict the
relevance of a notification to the user.

4.1 Preliminary Interviews

In this stage, the attempt was to collect qualitative data on how users
interact with notifications in their current state. Semi structured
interviews were conducted with 23 android smartphone users. The
main headers that the interviews touched upon were:
« How many notifications the users think they get

on average per day?
+ Do they find notifications disruptive?
« Methods that they use to manage interruptions

« Why they don’t use interruption management
methods that they don’t use

Most users reported that they received ‘a lot’ of notifications everyday.
Understandably, they weren’t keeping track of the exact number. But
while most of the users found some notifications to be bothersome,
there were a couple of users who were ‘used to’ them and weren’t
bothered much by them. But all of the users agreed that they would
like some of the notifications to stop.

Regarding the management of notifications, out of the 23 interviewees,
4 used the ‘block app’ option within android to prevent specific apps
from sending messages. Out of these 4, 1 user blocked individual
contacts (mostly advertisements) from sending messages. It was
interesting to note that 22 of the interviewees used the ‘mute’ option
in WhatsApp. The muted conversations were all group chats. They felt
no urgency to respond to or read the group chats, unlike the individual
chats, where they felt the need to respond. This observation was inline
with the previous studies (discussed in section 3.1) in the same field.

4.2 User Phone Data Collection

¥

The aim of this step is to collect notification data from the users
smartphones. This data can then be analyzed and used for developing
an algorithm that can identify a disruptive notification. It needs to be
ensured that all of the variables that are tracked can be categorized
into a finite number of categories so that it can be fed into the machine
learning algorithm. The parameters were selected with the intent of
measurement/tracking on phones running on android platform.



4.2.1 Selection of Parameters to track

The parameter selection was done based on the different variables
that can be measured and tracked by a smartphone. The preliminary
list of parameters is listed below:

App/Package Name : The app that is throwing the notification

Date of receipt: Thisisto be then converted into weekday/weekend
while feeding to the machine learning algorithm

Time of Receipt
Time of Consumption: When the user opens/clears the notification

Priority of message : Integer values ranging from -2 to 2 that are
assigned by android system/application

Text Content of the notification : To be analyzed later for better
classification

Title of notification
User Activity at the point of receipt of notification
User Activity at the point of consumption of notification

User state at the point of receipt of notification (If the user is
engaged in any activity based on their calendar status)

Was the user using the phone at the point of receipt of notification
User Location on notification receipt

User Location on notification consumption

User response as to whether they find the notification relevant

At the point of working on the collection of these variables, it
was observed that some of the variables were harder to track
than others mainly due to the fact that they were too resource/battery
consuming. Based on this observation, a few of the parameters were
dropped, namely:

User Activity at the point of receipt of notification
User Activity at the point of consumption of notification

User state at the point of receipt of notification (If the user is
engaged in any activity based on their calendar status)

User Location on notification receipt
User Location on notification consumption

While this would potentially make the predictions a bit less accurate,
till a point when thesevariables can berecorded with less consumption
of resources, they were dropped. At such a point, they can be added
as features into the machine learning algorithm to improve it.



4.2.2 Data Collection Tool

The Data Collection Tool records the parameters identified in Section
4.1 and provides the users with a method to record their response to
any notification. While most of the parameters that are recorded are
automatic,the user’sresponse (about the relevance of the notification)
is gathered from the users themselves. This is done by showing a
notification from the Data Collection Tool (henceforth referred to as
‘DCT notification’) along with every regular notification that pops up
(Fig. 2)

Gmall:GS Sports M
W ik eferred notification from Gma

CLEAR ALL

Fig. 2: Sample DCT Notification

For the user to be able to identify the notification that the DCT
notification is referring to, it is important to give some sort of a
connection between the two. Hence, an attempt was made to
position the DCT notification directly below the referred notification
so as to maintain a positional reference. But due to the clubbing of
notifications in Android N, this strategy did not work. Therefore,
explicitinformation referring to the App name and title of the referred
notification was included in the DCT notification as reference for the
user. The user is asked if the notification referred was useful to them.

The user is given 3 options in the notification: ‘Yes’, ‘No’ and ‘NA’. ‘NA’
option is applicable only to the data collection phase, where system
notifications like battery, wi-fi, alarm clock, etc. can be exempted
from the notification tracking in order to reduce the load on the user.

The notifications that are marked ‘NA’ are added to a filter thatignores
such messages in the future, i.e., does not post DCT notifications for
them. The DCT, then uploads the collected data into an online firebase
database in JSON format.



10

4.2.3 Collected Data

The collection tool was shared with 8 users (7 PG students, 1 Retired
Professional). Data was collected over a course of 7 days. This data
would act as reference for designing the machine learning algorithm.

At a glance, the data reveals some preliminary information:

The average number of notifications received per user per day was
71. Not all the notifications were responded to, by the users (since
sometimes, it becomes too much effort to respond to all) Amongst
the notifications with recorded responses, it was found that 47%
were marked as irrelevant. This is an important indicator towards the
number of low-priority notifications a user gets a day, which would be
around 35.

Another interesting observation (which may not bear much in terms of
the project) was that 50% of all the recorded notifications were from
WhatsApp and out of them, 50% were from group messages.

4.2.4 Data Analysis

This step involved running a python code on the server (in this case,
the developer’s PC) to analyze and modify the data to the required
format. The first steps were to prepare the data to a format that can
be fed into the machine learning algorithm. While this involves mostly
categorization for the non-textual data, it is more complex for the
textual data.

Currently there are no reliable API’s that run machine learning
algorithms directly in a mobile device (mainly due to processing
resource constraints). For the primary data collection step, all the
data pertaining to each notification (as mentioned in 4.2.1) was
uploaded to the server as is. But sending notification data directly
over the internet to a third party’s server raises security concerns. This
is especially applicable to the title and content of the notification,
since they can potentially contain sensitive information. Hence, the
ideal way to manage the data would be to store the individual words
from the content in the user’s device itself; index them in an array and
send the index values back to the third party server (preferably google
machine learning APl itself).

An example is given below:

Notification Title: “Ashok IIT”(In this case, the contact name)

Notification Content: “Meeting has been postponed to
wednesday”

In this case, the title will be added to the title array as an item:
Title array before receiving the message : {“title1”, “title2”, “title3”}

Title array after receiving the message :
{“title1”, “title2”, “title3”, “Ashok IIT"}

Now “Ashok IIT” will be referred to as 3 (index of the item in the array)



For the content, the following actions will be performed:

1. Remove stop words (commonly used words. Eg: “is”, “the”,
“has”, etc.). This step basically helps to keep the data compact and
relatively manageable for storage and analysis purposes.

Input: “Meeting has been postponed to wednesday”
Result: “Meeting postponed wednesday”

2. Stem the resulting words to their roots. This step, again helps
make the data compact. Eg: “driven” or “drove” become “drive”

Input: “Meeting has been postponed to wednesday”
Result: “meeting postpone wednesday”

3. Splitresulting words into single strings and add to content array
(if it doesn’t already exist in the array.

”

Content array before: {“content1”, “postpone”}

Content array after:
{“content1”, “postpone”, “meeting”, “wednesday”}

11

Overall, the notification
Notification Title: “Ashok IIT”

Notification Content: “Meeting has been postponed to
wednesday”

becomes
Notification Title: 3
Notification Content: {0,1,1,1}

One limitation of this system would be that if the content is in another
language(eg: Hindi, Malayalam, etc.), then the above steps won’t
work, since stemming is more complex in such cases. And skipping
the stemming would result in a huge content array which would in
turn require more processing power to sift through (which needs to
happen every time a notification is received). It may be noted that
there are languages (mainly ones that are not agglutinative), where
all three steps would work. But for the purpose of this project, if the
language is not english, then the content is just marked as “NA”.



12

4.3 Design Implications
2. Users who do moderate level customization: They know that

In this section the different insights and design implications that came fine adjustments can be done. They block apps that they find

out of the primary and secondary research data, are discussed. The bothersome. But they don’t customize at contact level, i.e., block

main inputs, here, are derived from the user statements and behaviour. notifications from individual contacts. This is due to two main
reasons:

a. Don’t know that they can block at contact level
4.3.1 Types of users ) )
b. Know that they can. But haven’t tried because it’s too

The primary and secondary research pointed to mainly 4 types of deep within the settings
users types:

1. User who doesn’t customize at all : The user doesn’t consider
notifications as something that affects their work flow, though
they do consider irrelevant notifications bothersome (especially
promotional messages). There are two kinds of users under this
category:

3. Users who do heavy customization to get exactly what they
want (within the limitations of the system). These users tweak
specific details to customize their system to their preferences. For
example, they block specific contacts from messengers to avoid

spam/irrelevant interruptions.
a. User doesn’t have a good conceptual model of the android

system and hence tries to not fiddle around with the settings
out of the fear of messing things up.

4. Users who put their phone on silent/priority mode, thereby
blocking all incoming notifications during the period that they
are engaged in some important activity. They still don’t do a lot

b. User has a proper conceptual model of the android system of customization. Their approach is more of cluster blocking/
and is aware of how to mute/block apps, but finds it too muting as opposed to category 3.

tedious to do it and hence does not.



4.3.2 Cater to needs of each type of user

In order to give power to each type of user, the system needs to have
multiple levels of interactivity. At the same time, care should also be
taken to not make the first level of interface too complicated. Else,
users (type 1 and 2) may not use it at all.

4.3.3 ‘Filter. Not Block.

Aninterestingobservation wasthatthese useroftype1and 2 stillmuted
selective WhatsApp chats. While messenger also works in a similar
way, the user doesn’t do the same there. A key difference between
the two cases is that WhatsApp chats(muted ones) will still be seen by
the user when they check their feed for other messages or when they
feel like checking them. But the blocked notifications are not looked
at by the user(since most users rarely checked their ‘Messenger’ feed.
Coupling this with the observation that ‘Users were afraid of missing
out on useful/important messages’, the following design insight was
drawn: ‘Filtering notifications is better than blocking them altogether.
The option for blocking should also be there, though’ The filtered
notifications need to be shown to the users periodically so that they
don’t miss out on anything(relevant or not). This could potentially
encourage users to actively mute more notifications, which would
directly fuel the aim of this project.

13

4.3.4 Prompt Feedback to Users’ Actions

In order for the users to keep using a feature, they need to see that
their actions are making a difference. In this case, if the user marks a
particular notification as irrelevant, they expect the next notification,
thatisthesame asthe onetheymarked, should getfiltered out (Finding
from the user interviews). Hence, the system should be designed in
such a way that there is prompt feedback to the user’s action.

4.3.5 Delay Filtered Notifications

Secondary research revealed an interesting user behaviour where
the user would check their phone for notifications even if they set
their phones on silent mode. This is a possible side effect of muting
the messages. If the user checks their phone at some interval and
keeps finding filtered messages, it could potentially develop a habit
of checking. This would end up breaking the flow of work of the user,
which is quite the opposite of the aim of the project. The design
implication of this point was that the notifications that get filtered
need to be deferred and shown to the user as a bunch rather than as
and when they pop.

Based on the findings from the primary research, the planned final
output was:

« Interactions: For user to communicate preferences to the system
« Presentation of notifications

« Aframework for predicting relevance of future notifications based
on data collected from past notifications (Back end)



14

User

: Central Server :
| i el e e |
I : Under the Hood 0
: Online Server :
| (Running ML Algorithm) | @1
[ : |
N v P A T | | — i
e S
I: o8 : !
l: Ul Pl y
I: £ A
: User Response |: : Data Data Algorithm | : :
- -
1 :| (to notification) |: : Preparation Storage Storage 0
I = £l
I | Settings |—‘—, A
o (User Prefs) ‘ - :
I Notification Filter 1
I :| Filtered Tips/ |
: :| Notifications * Reminders :
! |
: User Device I
____________________________________ 1

Fig 3. System Level Diagram



5.System Design and
Ideation

There were two main points of direct interaction between the user and
the notification system:

1. Userresponses indicating the relevance of a notification
2. The presentation of the filtered notifications to the user

The rest of the working of the system is under the hood. The approach
to this stage was to explore different features and interactions
that contribute to the goal of the project ( to reduce the number of
interruptions) by catering to points that emerged from the primary
and secondary research stages.

Based on the prior steps, a system was developed (as visualized in
Fig 3) The following sections discuss in detail the function and working
of the different modules of the system.

15

5.1 User Interactions - User Response

The proposed notification system requires input from the user in order
totrainitselfto understand which notifications interest and conversely,
which don’t. In other words, explicit response from the user as to the
relevance of a notification is arequirement for the system to work. One
direct response indicating a notification as relevant would be if the
user clicks it. But the ones that the user doesn’t click on may not be
irrelevant. (For example, One Time Password (OTP) messages, where
the message is such that the user can get the OTP without having to
open the message). In the primary research stage, this information
was collected through an additional notification (for each notification)
using which the user could rate the original notification’s relevance
(as ‘useful’ or ‘not useful’). But such a method is not viable as a
permanent solution, since it is basically adding to the base problem
(too many notifications). Therefore, there is a need to find better ways
for the user to interact with the notification system.

Another point of interest was the presentation of the filtered
notifications to the user. While the filtered ones are of low relevance
to the user, the aim is to give the user the power to ultimately dispose
of them, rather than doing it for them. The logic behind this approach
was to give the user, at all times, the power to manually override the
relevance assigned by the algorithm. This is especially important in
the event of a failure on the part of the filtering algorithm causing a
relevant notification being filtered out. Hence, there is a need for the
filtered notifications to be presented to the user.



16

In this stage another round of secondary research was done to explore
the different kinds of interactions available to the smartphone user
(relevant to notifications). This was followed by ideation for exploring
different interactions that can be used to collect the required
information; and the different ways to present the filtered notifications
to user.

The following are the different interactions that were considered:

5.1.1 Click + Swipe left/right

L

0“
Press the notification 2. Hold finger down + 2. Hold finger down +
Drag left to indicate Dragright to indicate

Fig 4. Click + Swipe left/right

Number of actions: 1(Click) + 0.5 (Swipe) =1.5

Pros: Practically effortless

Cons:

The user gets forced to respond to pretty much all the notifications.

In some cases the user may not be sure of whether they want to
swipe left/right ( since either action would have a consequence).
This could put unnecessary cognitive load on the user



5.1.2 Expansion of Android N’s Notification Setting

A checkbox for marking the notification as irrelevant provided as an
extension of the Android N notification settings.

@ 2ep

O Show notifs silently
© Block all notifs
Q© Dont silence or block

@

[0 See less of such notifications

More Settings  Done

The top 3 items are carried over from
Android N. An additional check box
added for the proposed notif system

4. More settings get revealed 5. Click on check box to indicate less

1. Press the notification 2. Hold finger down + 3. Click Cog button
relevance + Click 'Done' button

Short Swipe Left/Right
(Reveals Cog button)

Pros:

« The text enables explicitly let the user know
what the checkbox does.

Fig 5. Interaction idea 2

Number of actions:
Cons:

1(Click)+ 0.5 (Swipe) + 1 (Click) + 1 (Click) + 1 (Click) = 4.5 . _ L
The below points may dissuade users of Type 1 and 2 from using it

« Too many actions required.
« Too much data/options presented to user on the same screen.

17



18

5.1.3 Expansion of android N'’s notification setting

Similar to 5.1.2, but the action required to bring up the settings is to
clickand hold the notification (again, similarto android N’sinteraction)

Number of actions: 1 (Click)+ 0.5 (Hold) + 1 (Click) + 1 (Click) = 3.5

Pros:
The text enables explicitly let the user know what the checkbox does.

Cons:

@+
O Show netifs silently
(© Block all notifs

(© Dont silence or block

[ See less of such notifications

More Settings Done

Android N. An additional check bex
added for the proposed notif system

1. Press and hold the notification 2. More settings get revealed 3. Click on check box to indicate less

relevance + Click '‘Done’ button

Fig 6. Interaction idea 3

The top 3 items are carried over from

The below points may dissuade users of Type 1 and 2 from using it
Moderately high number of actions required.
Too much data/options presented to user on the same screen.



5.1.4 As an extension of the notification

1. Press the notification

2. Hold finger down +
Swipe Down
(Expands notification)

3. Press notification 4. Swipe down to reveal

5. Click Respective button to
response buttons indicate high/low relevance
Fig 7. Interaction idea 4

Number of actions required:

1(Click) + 0.5 (Swipe) +1 (Click) + 0.5 (Swipe)
+1(Click) + 0.5 (Swipe) = 4.5
Pros:

Low cognitive load (Only two options (yes/no) presented to user)
Cons: Too many actions required.



20

5.1.5 Flip and swipe

@ 20
Do you wam 1o see such
matifications in the future?

1. Press and hold notification 2. Hold notification till it flips
(Vibration feedback)

Yes

3. Hold finger down +
Swiperight or left toindicate
high/low relevance

Fig 8. Interaction idea 5

Pros:

Goeswiththe card metaphorthatandroid pushes. (Theinformation
is given on the flipside of the card)

User has the option of not responding at all (by just swiping the
notification away)

Takes only 2 actions to respond. Hence, more likely to be used by
Type 1 &2 users

The text enables explicitly let the user know what their action does

Number of actions : 1 (Click) + 0.5 (Hold) + 0.5 (Swipe) =2

This interaction was selected for the further steps.



5.2 Presentation of Filtered Notifications

Based on primary research, a user could get >40 filtered notifications
a day. Since most of these notifications would be filtered out and
presented to the user in one go, the layout has to be modified to suit
the same. Currently, android system groups notifications based on
the source app. Here, a grouping based on the type of notification is
proposed:

The primary groups would be “Messages”, “Promotions” & “Updates”
(Much like the gmail grouping).

The same grouping is not carried over to unfiltered notifications, since
the underlying assumption is that the unfiltered ones are important
and should be presented to the user without the need for any extra
steps to read them.

Next, the flow for the presentation of the grouped notifications was
designed and wireframe was developed. (Fig. 9)

Qide o wlgpse ol
— (hd %o clopm
Eremp
Chde »
elesn all
goup)
oL B daan,
—* awur‘-?—
i e Feohen Tawopradw 2 |
“x' o nedhir ! a :
A - e T
el
]

Fig 9. Grouped Notification Wireframe & Flow

21



22

5.3 Finer Controls : Manual Grouping
Derived from insight: 4.3.1 & 4.3.2

Type 3 users are likely to desire more control over the grouping
than just stick with the default ones discussed in section 5.2. Hence,
provisions for creating custom groups and adding apps to the group
list would be made. Subsequently, the flow for the grouping settings
was designed and wireframe was developed (Fig. 10).

NOTIFICRTION  SETTINGL

R
l-\am&c emu?t
Ropn ¥

— 9

Fig 10. Fine Control Ideation Wireframes

5.4 Feedback to Users
Derived from insight: 4.3.4

For the system to be continuously used by the user, there needs to be
direct and visible effects to the user’s actions (in this case, the action
refers to marking of notifications as relevant or not). Without such
feedback, the user is likely to stop using it eventually. This point is
based on the primary research, when the users(on whose phones the
Data Collection Toolwas installed) were asked about what they expect
the system to do. One common response (from users of any category)
was that they “expect the notification that they mark irrelevant to get
filtered from the next time onwards”.

The long term feedback on their actions could be through periodic
notifications from the android system informing the user about
how many interruptions were filtered out by the system during that
time period. This could potentially motivate the user to keep giving
feedbacks to the future notifications.



5.5 Reminders/ Tips
User could be given notifications (filtered) teaching/reminding them

how to use this feature. These notifications would go under filtered
notifications.

4 =4 0

J v-3
Up to 60% OFF on NIKE!

Mo Kidding! Shop for Tees, Shorts, Sports ﬁ

CLEAR ALL

airtellJio 4G

0,

Fig 11. Tips

23



6. Prototyping

Since the final product that is being pitched in this project is an
expansion on the Android OS, making a fully functional prototype is
notanoption. Thereason whythe entire system cannot be prototyped
into one functional prototype was that it would require modifying
the android OS’s core codes to introduce the new interactions to the

notifications. Hence the whole prototype was split into Ul and system.

The Ul partismeantto demonstrate the working of the new interactions
and the system is meant to demonstrate the working of the
Notification Flltering algorithm. The system prototype would also be
used to check how effectively and accurately the algorithm filters out
the notifications.

25



26

User

| Central Server :
I --------------------------------------------------------------------------- . I
I Under the Hood a|
: Online Server :
| (Running ML Algorithm) | i
| 1
B i i NS A—— iimiimiie ]
o e e - :— --------------------- - -
I E_ ......................... é E F 3 I
i o |
. P |
: | User Response |: Data _ Data Algorithm | &}
I":| (to notification) |: :'| Preparation | Storage Storage :
l: - :
II Settings |—‘—J :
I :| (User Prefs) - 2
: = Notification Filter : :
:| Filtered Tips/ I
i ;| Notifications ‘ = Reminders ‘1
. T . s 1
: o R ; :
| UserDevice |

Meodules Included in Ul Prototype -

Fig12. Ul Prototype Overview



6.1Ul

The Ul prototype includes the custom interactions, settings and
presentation of the filtered notifications (Fig. 12). The purpose of
this part of the prototype is to be used for heuristic evaluation of the
different Ul components. It was developed using Adobe Flash and
actionscript3.0. The application mimics the notification bar of Android,
i.e., the user can interact with the sample notifications provided in the
prototype similar to the normal android system but along with the
new interactions that were introduced for this project.

Ul Screens

4 40

& appl
Motif 1
Metification Content

& sppt

Natif 1

Notification Content
& Appl

Notif 1
Metificatio

airtelllio 4G

.

OB B B

B:36 PM
+

B appi
Motif 1
Natification Content

) o Motification Title

Do you find this notification

B ipp
Motif 1

@ Filtered Notifications
14 New Notifications

Messenger, Mynira

airtel|Jio 4G

O

Fig. 13 Individual notification interactions

1 A =4 N

27

o

useful right row?

&
Q



28

6:36 PM

4 =4 0

& spp
Motif 1
Natification Content

& Appl

Motif 1

Notific: Content
B ippt

Motif 1

on Content

i Filtered ¢ cR
14 New Motifications

Messenger, Mynira

O® B B

LTE ﬂ‘ .

Notif 1 n

Motification Content

i Filtered Notifications “
~ Messages CLUAR GOUP
. Promotions (4 New) CLEAR GROUP

Notif 1 n

Notification Content

Notif 1 ‘

Motification Content

Maotif 1 ‘

Motificatien Gontent

Fig. 14 Group notification Interactions

Fig 15. Icon For Grouped Notifications

Naotif 1
Motificatien Content
i fopt

Notif 1
Maotificaticn Ca

[ e
Notif 1

Motificaticn Content

w  Promotions (4 New)

CLLAR BRI

ALLAR BRI

BN A% =

€ Configure notifications

On the lock screen
Manage Groups
d o} (W]

<  Manage Groups

Shopping

<

o

Fig 16. Fine Control



6.2 System Prototype

The system level prototype includes an Android application that
collects the notification information; and an online server that applies
machine learning on this data to classify notifications as relevant or
not (Fig. 17). This part of the prototype will be used to evaluate the
performance of the overall system in terms of its prime purpose,
which is to reduce interruptions for the user. Here, the performance
pertains to the system’s ability to identify irrelevant messages. The
development details of the system prototype has already been
discussed in more detail in section 4.2. The final system design
involved modifications and updations on the data collection app to
get the desired outcome; the desired outcome in this case being 100%
correct classification (as relevant or irrelevant) of all notifications.
While that may not be possible with limited amount of data (which
could be the case if the user doesn’t actively mark the irrelevant
notifications), the algorithm had to be tweaked in a way that it would
never classify an important notification as irrelevant. This is to ensure
that the user does not miss out on important notifications on the
system’s account. This is of utmost importance because if the user
finds important notifications inside the filtered notifications (even
once), they may start checking the filtered ones all the time to ensure
that they’re not missing anything, which would beat the purpose of
the whole system to begin with.

29

6.2.1 Filtering Algorithm

The filtering algorithm is what takes the user’s input (that come
through the interactions discussed in section 5.1), learns from this
input and predicts if the next notification would be relevant to the user
or not. For this purpose, machine learning(ML) was employed. The
algorithm training is done on the online server. An ML algorithm needs
to be trained before it can identify a relevant/irrelevant notifications.
The data uploaded from the user devices are used as the input used to
train the ML algorithm.

The filtering algorithm, overall consisted of three main stages:

1. Data preparation - The stage where data is arranged into a format
that can be used to train the machine learning part

2. Machine Learning Algorithm training - The formatted data is used
to train the ML model. After that, the ML model is ready to filter
notifications.

3. MLFiltering - In this stage, the trained ML model is used to predict
the relevance of future notifications.



30

User

| Central Server :
l ik bk Lk L bbb bbb kbbbl Ll Ll Ll b bl e I
| : Under the Hood fl
: Online Server :
I (Running ML Algorithm) | &1
| : i
[P ittt Dt ———y
P e e = - P ———————————— ] ———— - - —— — :-
I SesanasssasnasssasnnEanens ' A \ :l
! Ul P 1
| - |
: E |
: :| User Response |: : Data Data Algorithm | @)
I:| (to notification) |: : Preparation Storage Storage :
| : :
: - il
_._L_ Settings I—a—l ¥
I :| (User Prefs) | - 1
| - : Notification Filter i
‘| Filtere - Tips/ ¥
| - Notifications _‘ Reminders é :
| .

: User Device

Modules Included in System Prototype -

Fig17. System Prototype Overview



Sklearn library (for python) was used for the ML part of the algorithm.
Different ML algorithms were tried out and the one which showed
the best base accuracy was chosen. Based on the requirement of
the application, the ML technique that needs to be used here is
classification[15] using supervised learning[15]. The different ML
techniques tried out were: Naive Bayesian(NB) Classification, Decision
Tree and Support Vector Machines (SVM). The algorithm was trained
using 60% of the data collected during primary research. It was then
tested against the remaining 40% to check for accuracy. The numbers
for the different ML models were as below:

With 234 training data points:

ML Model Accuracy (%)
Naive Bayesian Classifier 62
SVM 88
Decision Tree 83
Table 1: ML Model Accuracy with 234 Training Points
ML Model Accuracy (%)
Naive Bayesian Classifier 59
SVM 87
Decision Tree 91

Table 2: ML Model Accuracy with 1163 Training Points

31

On training with more data, some models started showing better
accuracy (Table 1&2).

Since it had the best overall accuracy, the decision tree model was
chosen for further steps.

Overrides: In accordance with the design insight (Section 4.3.4), the
user needs immediate feedback to their actions. But ML doesn’t make
a direct judgement based on a single data point. Hence an override
code was added which would check if a notification is the exact same
as one before (that has a userresponse). If the notification was marked
as irrelevant by the user, then all future instances of notifications
with the ‘exact same’ features as that notification would be marked
irrelevant and filtered out.

In the above steps the filtering algorithm is completed. But the same
needs to be exported back into the user device. The other option
is to upload the notification data to the server every time the user
device receives a notification; evaluate the predicted relevance of
the notification on the server; and send it back to the user device.
But this would require data connectivity for the system to function.
Instead, the filtering algorithm was exported back to the user device
by running all permutations of variables (on the server) through the
filter and sending back the ones that returned irrelevant. This dataset
was then stored in the user device. For every notification that gets
received, the system would check it against the returned dataset and
filter based on the same.



7. Evaluation

The system level performance of the system is indicated by the

accuracy with which the system can identify irrelevant notifications.

This was checked by collecting the notifications that are received by
the user’s device and running them through the algorithm that was
trained with the data that they input during the primary research
phase. The metric for evaluation are the accuracy of classification
(the percentage of filtered notifications that were actually irrelevant)
and the rate of filtering (The ratio of identified irrelevant notifications
to total irrelevant notifications). While the rate of filtering would
keep improving as time goes on (and the system learns the user’s
preferences), the accuracy of classification should ideally be close to
100%.

The evaluation of the overall system was split into two major parts:
1. Longterm performance evaluation:
2. Short term performance evaluation:

33

7.1 Long term performance evaluation

This stage involved the simultaneous design and evaluation of the ML
algorithm. The method followed for the evaluation was train/test split.
This involved using the data collected using the DCT (section XX) being
used for both training and testing the algorithm. Out of all the users
that the data was collected from, the one that was collected over 1
month was used for this purpose, since it had the most number of
data points. The dataset was split into two, one with the first 60% of
data points (training set); and other with the remaining 40% (testing
set). All of these data points had the user response w.r.t relevance.
The training set and testing set were used for training and testing
the algorithm respectively. The different ML methods mentioned in
section Section (6.2.1) were tried out. The performance details are
presented in Fig 18.



91 90
| 27 89

S0 - B Overall Accuracy
@ % Irrelevant Filtered
40 - B % False Positives

(less is better)
30

20 -

Gaussian NB Multinomial Decision Tree SVM Random
NE Forest

Fig 18 : ML Algorithm Performance

Decision Tree, SVM and Random Forest performed very well on the
overall accuracy and ‘% irrelevant filtered’. But the most important
metric, whichisthe ‘% false positives’ wasstilltoo high. Itshould ideally
be 0. Hence tweaks were attempted on the algorithms. Weighted
classes were used on SVM and the test re-run. The performance was
as given in Fig 19. While SVM’s filtering rate and overall accuracy came
down, it’s ‘% false positives’ went all the way down to 2.8%. Hence
SVM and Random Forest were chosen as possible candidates for the
ML algorithm.

100 - 95
% 91 90 gg
80
80 4727
74
70 - b5
61

50 59 58
30 W Overall Accuracy

@ % Irrelevant Filtered
40

| % False Positives
30 (lessis better)
10 - 3

2.8
0 .

Gaussian NB  Multinomial Decision Tree SVM Random
NB (Weighted Forest
Classes)

Fig 19: Second Round Evaluation Performances

In order for the algorithm to perform in low-data conditions (at the
initial stages of use), an add-on code was written, which looks for
exact matches of notifications that have already been marked by the
user and replicates the response for the next one of the same kind.
This helps give give immediate feedback to the user so that they keep
using the feature (Refer Section 4.3.4). This was tested out in the
section 7.2.



7.2 Short term performance evaluation

This part of the evaluation was more of an indicative one. The main
purpose being to check how the system performs when there isn’t
sufficient data to make accurate predictions. This was done using a
prototype installed in the user devices. The prototype collected the
user preferences using a separate notification, similar to the DCT.
This data was uploaded to an online db and downloaded fed into a
python framework which updated the filtering criteria for the user’s
phone. This system was evaluated with 4 users over the course of 1
day. The system started filtering in the first 4 hours of the evaluation
period. There were no instances of filtering out relevant messages.
But the overall filtering rate was below 40%. On a subjective front,
the users found the filtering to be useful. But the fact that the filtering
mechanism was a black box, (where they couldn’t have sufficient
control over the filtering criteria) made the users cautious about

responding to the app. This would not be an issue with the features
mentioned earlier.

35



8. Future Scope

The prototype developed for this project demonstrates the Ul and the
underlying algorithm of the system separately. The next step would be
to implement the complete system (Ul and algorithm) atop android
OS and test it out to see how it performs. Since the system relies on
the user feeding it data in order to learn about their preferences, the
user needs to be using the interactions afforded by it. While there are
elements added in the design (namely ‘an easy to use interaction to
respond’ (section 5.1), ‘feedback’ (section 5.4) and ‘tips/reminders
(section 5.5)) to help ensure that the user utilizes this feature, it needs
to be checked whether they are enough to nudge the user into actively
use the system.

The system, in its current form, does not use information from sensors
like accelerometers, gyro, GPS, etc. due to the fact that they end up
consuming too much of the phone battery. If thisissue can be resolved
(at OS or hardware level), these factors can be used to model a much
more robust system. Similarly, using the calendar information of the
user can be another way to make the system more robust.

37



9. Conclusion

Theprojectstarted outwiththeaim ofreducingthenumberofirrelevant
interruptions in the lives of the smartphone users. During the course
of the project, a smart notification system was designed, prototyped
and evaluated against the aim of the project. The system included
new interactions and features (to be added to the smartphone OS)
that would enable the user to communicate their preferences to the
system; and an algorithm that uses machine learning to predict and
screen the irrelevant notifications. Two ML methods were employed
for developing the algorithm: Support Vector Machine(SVM) and
Random Forest. Evaluation of the prototype showed that the
system reduced the number of interruptions by 61%(using SVM) and
89%(using Random Forest) after training with 18 days worth of data;
with a false positives rate of 2.8%(using SVM)and 7.7 %(using Random
Forest). While the overall framework has been defined, there is room
for improvement in the algorithm, which can be further tweaked to
improve the performance.

39



References

[1] Julie Aranda, Noor Ali-Hasan, and Safia Baig, 2016. I'm just trying
to survive: an ethnographic look at mobile notifications and attention
management. In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and Services Adjunct
(MobileHCI “16). ACM, New York, NY, USA, 564-574. DOI: https://doi.
0rg/10.1145/2957265.2957274

[2] Martin Pielot, Karen Church, and Rodrigo de Oliveira. 2014. An in-

situ study of mobile phone notifications. In Proceedings of the 16th
international conference on Human-computer interaction with mabile
devices & services (MobileHCI “14). ACM, New York, NY, USA, 233-242. DOI:
http://dx.doi.org/10.1145/2628363.2628364

[3] Joel E.Fischer,ChrisGreenhalgh, and Steve Benford. 2011. Investigating
episodes of mobile phone activity as indicators of opportune moments
to deliver notifications. In Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI 11). ACM, New York, NY, USA, 181-190. DOI=http://
dx.doi.org/10.1145/2037373.2037402

41

[4] Jeremiah Smith, Anna Lavygina, Jiefei Ma, Alessandra Russo, and
Naranker Dulay. 2014. Learning to recognise disruptive smartphone
notifications. In Proceedings of the 16th international conference on
Human-computer interaction with mobile devices & services (MobileHClI
14). ACM, New York, NY, USA, 121-124.

DOI: http://dx.doi.org/10.1145/2628363.2628404

[5] Hugo Lopez-Tovar, Andreas Charalambous, and John Dowell. 2015.
Managing Smartphone Interruptions through Adaptive Modes and
Modulation of Notifications. In Proceedings of the 20th International
Conference on Intelligent User Interfaces (IUl ‘15). ACM, New York,
NY, USA, 296-299. DOI=10.1145/2678025.2701390 http://doi.acm.
0rg/10.1145/2678025.2701390

[6] Veljko Pejovic and Mirco Musolesi. 2014. InterruptMe: designing
intelligent prompting mechanisms for pervasive applications. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ‘14). ACM, New York, NY, USA, 897-
908. DOI=http://dx.doi.org/10.1145/2632048.2632062

[7] Jeremiah Smith and Naranker Dulay. 2014. Ringlearn: Long-term
mitigation of disruptive smartphone interruptions. In Pervasive
Computing and Communications Workshops (PERCOM Workshops),
2014. |IEEE International Conference on, IEEE (2014), 27-35.



42

[8] Fisher and Simmons. 2011. Smartphone interruptibility using
density-weighted uncertainty sampling with reinforcement learning. In
Machine Learning and Applications and Workshops (ICMLA), 2011. 10th
International Conference on, vol. 1, IEEE (2011), 436-441.

[9] SungHyuk Yoon, Sang-su Lee, Jae-myung Lee, and KunPyo Lee.
2014. Understanding notification stress of smartphone messenger
app. In CHI 14 Extended Abstracts on Human Factors in Computing
Systems (CHI EA “14). ACM, New York, NY, USA, 1735-1740. DOI: https://doi.
org/10.1145/2559206.2581167

[10] SungHyuk Yoon, Sang-su Lee, Jae-myung Lee, and KunPyo Lee.
2015. A Study On Notification System Design Of Smartphone Messenger
Considering The User’s Stress. Archives of Design Research 28.2 (2015):
75. Web.

] Ray, S., Shaikh, F., Srivastava, T, & Kashyap, S. (2017, January
31). Essentials of Machine Learning Algorithms (with Python and R
Codes). Retrieved Mar 12, 2017, from https://www.analyticsvidhya.com/
blog/2015/08/common-machine-learning-algorithms

[12] Supervised learning®. (n.d.). Retrieved March 12, 2017, from http://
scikit-learn.org/stable/supervised_learning.html#supervised-learning

[13] Supervised learning¥. (n.d.). Retrieved March 12, 2017, from http://
scikit-learn.org/stable/supervised_learning.html#supervised-learning

[14] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised
machine learning: A review of classification techniques.



